
 Available at www.aujst.com 171

Remodeling the oneM2M common services layer with core
logic services for enhanced IoT reuse
Bassey Asuquo Ekanem1*, Kehinde K. Agbele2

1Department of Computer Science, Delta State University of Science and Technology, Ozoro, Delta, Nigeria, 2Department of
Mathematics and Computer Science, Elizade University, Ondo, Nigeria

ABSTRACT

Reuse of core logic functions across domains in internet of things (IoT) app development is a challenging task due to inadequate models
and architectures to support this process. Due to this, reuse in IoT systems is limited to infrastructure services such as device management,
connectivity, message communication, and others while core logic components are developed at the application layer in a highly domain
specific approach. This research undertook a study of core logic functions in source codes of selected IoT apps downloaded from GitHub. The
study revealed four core logic functions common to IoT apps across domains that can be repackaged as microservices and incorporated into
the common service layer where they can be reused across domains in IoT solutions. With this approach, apps development time and efforts
will be reduced as developers’ productivity and products quality are enhanced.

Keywords: Common service layer, IoT common core logic services, oneM2M Architecture, software reuse

Submitted: 25-09-2023, Accepted: 06-11-2023, Published: 30-12-2023

INTRODUCTION

In recent times, the world has witnessed a great digital
transformation following the introduction of internet of things
(IoT), a technology that is swiftly penetrating every sphere
of human endeavors with great benefits. IoT is a network
of devices called “things” – that are connected through the
internet, enabling the collection, exchange, and analysis of
generated information.[1] This concept was first introduced
by Peter T. Lewis in Washington DC in September, 1985 as a
technology for the future.[1-3] Today, it’s a global masterpiece
adopted by businesses and individuals to improve operational
efficiency, grow revenue, and enhance the quality of life.[4]

IoT is widely applied in our daily life. The next generation
of mobile connection technology called 5G is expected
to boast the application of IoT in our daily living through
massive connected devices. Research findings reported in
Statista[5] reveals that, by 2030, 29.42 billion IoT devices
will be connected globally across domains from automotive
to smart-homes, Fintech to wearables, and many others. The
report further affirms that, the massive deployment of IoT

devices globally is expected to generate huge revenue of
about $1 trillion by 2030 to the IoT industry which will, in
turn, encourage innovative use of IoT solutions. Furthermore,
it is predicted that the lion share of this industry revenue
will be from innovative IoT software solutions developed
and deployed for use by businesses and individuals across
domains. This trend is expected to ignite a growing pressure
on software developers to build and deploy massive innovative
IoT software solutions to meet users’ demands.[5]

Considering the complexity of IoT software solutions,
enormous tasks and costs involved in the development
process, IoT software development projects could drag
longer than expected thereby delaying the deployment of
the needed solution. In this case, software reuse becomes a
viable option to fast-track the process.[2,3,6] Software reuse
is the process of reusing software components from existing
software projects in developing new solutions, instead of
developing entire software from scratch. This approach is
advantageous in terms of increased productivity, shorter time
to market, minimized risks, and enhanced software quality with
integration capabilities.[3,4,7,8] Reusable software components

Address for correspondence: Bassey Asuquo Ekanem, Department of Computer Science, Delta State University of Science and
Technology, Ozoro, Delta, Nigeria. E-mail:basseyekanem99@gmail.com

Original Article

Australian Journal of Science and Technology
 ISSN Number (2208-6404)
 Volume 7; Issue 4; December 2023

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 172

are interchangeable software parts with interfaces that make
it easier to use them in other software projects and they are
usually presented in the following forms, namely, APIs, data
access objects, plugins, classes, or models.[9-11]

Being that IoT software engineering is a relatively new area,
application of software reuse in this area is highly challenged[12]
as most IoT solutions are often bespoke and highly domain
specific.[13] Moreover, inadequate models, frameworks,
and architecture needed to support loose coupling of core
logics of IoT apps into microservices for reuse are a more
serious challenge.[7,14-17] To this end, reuse in IoT systems is
limited to infrastructure services such as device management,
connectivity, and data messaging as provided by most widely
used architectures like onemachine-to-machine (M2M) while
core logics reuse across domains remains highly challenged.

In view of the above, this research was designed to study
reuse in IoT software engineering with the view to proffering
solutions to inherent challenges with respect to core logic
reuse. The remainder of this article is organized into nine
sections as follows. Section 2 presents a review of related
works while Section 3 is for overview of oneM2M model.
Section 4 presents findings from the review. Materials and
methods are discussed in Section 5 while Section 6 presents
a review of the downloaded source codes. In Section 7,
results and discussions are covered while Section 8 presents
implementation of the remodeled common service layer.
Conclusion and recommendations are presented in Sections
9 and 10, respectively.

RELATED WORKS

There are many research efforts in IoT software reuse
documented in the literature. However, for the purpose of this
research, emphasis was placed on the review of research efforts
relating to decoupling of IoT Apps into common services for
reuse and the reuse of IoT core logics in software engineering
projects.

In Nastic et al.,[18] an IoT programming model called PatRICIA
is presented as a guide on how to decouple physical devices
from user applications. PatRICIA uses Intent and IntentScope
Abstractions. While intent represents desired tasks to be
performed in a physical environment, IntentScope represents
logical groups of physical devices. The open source OM2M
project named autonomic ETSI-compliant M2M service
platform is presented in Alayaa et al.[19] The project uses
autonomic computing paradigm and semantic models to
addresses the M2M complexity issues that hampers reuse
in IoT software engineering. With these models, dynamic
discovery and reconfiguration mechanisms for IoT systems
are provided.

The report presented in Swetina et al.[20] states that, in horizontal
IoT standards, oneM2M is the most popular; its goal is to
define independent accessibility interfaces for M2M services
that can be reused across domains founded on architectural
outlay comprising three layers, namely, applications, services,
and networks layers. In Bonino et al.,[21] microservice-based
IoT platform for building smart cities is proposed with a
distributed functionality of large systems organized into
different reusable microservices performing the tasks of
data collection, data aggregation, and data analytics on live
streaming data. Furthermore, in Newman,[22] composability
is emphasized as apps attribute that facilitates fine-grained
arrangement of microservices using RDF and JSON payload
in a manner that increases reusability in various application
domains. Al-Fuqaha et al.[23] presents a review of IoT enabling
technologies, protocols, and applications as well as key IoT
challenges faced in IoT deployment of which decoupling and
reuse of microservices are revealed as the key IoT deployment
challenges.

In Alaya et al.,[24] oneM2M based ontology is presented as
a solution for semantic data interoperability at the services
level in heterogeneous IoT environment. IoT Reuse across
domains is demonstrated in[25] with lysis platform using the
iCore vertical architecture and social relationships defined
among virtual objects that support horizontal IoT. In Spalazzese
et al.,[26] a review of solutions for technical interoperability
is made which reveals the use of global sensor networks
Framework, SENSEWEB Platform, and FOSSTRAK tools
in most IoT projects.

The need for semantic interoperability as a tool for aligning and
mapping objects among different application domains in Web of
Objects (WoO) based IoT environment through microservices
and semantic technologies is emphasized in OEP.[27] Semantic
interoperability in this context means enabling different agents,
services, and applications to exchange information, data, and
knowledge in a meaningful way, on and off the Web. WoO
architecture for IoT Provisioning is presented in Jarwar et al.[14]
to support reuse of objects with microservices and maintain
their relationships with the reused objects. It also presents an
algorithm for microservices and related objects discovery for
reuse purposes. Using Xively platform, a technique for sharing
firmware of common devices is presented in LogMeIn,[28]
although the work does not cover reusability of service and
data at service level. In SimfonyBlog,[29] oneM2M’s horizontal
architecture framework is presented as a global framework for
building IoT devices, gateways, and platforms. Furthermore,
it provides for common services layer that can be used by
developers to deploy IoT solutions and data-exchange systems.

In Martín et al.,[30] the categorization of IoT platforms into
vertical layered platforms and horizontal layered platform is
provided with pros and cons of each category enumerated.

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 173

Vertically layered platforms are those that address problems in
single domain or industry while horizontally layered platforms
address problems across domains. The work in Ahmad et al.[31]
presents appdaptivity as a system that enables the development
of portable decoupled applications with adaption to changing
contexts. Using appdaptivity, application developers can
intuitively create portable and personalized applications,
disengaging from the underlying physical infrastructure.

In the work reported in Alwis et al.,[32] a cloud-centric IoT
application store that hosts virtual objects of different IoT
domains was designed and implemented with a provision
for technology tinkerers to consume the virtual objects and
integrate them in new IoT applications. The said application
store presents decoupled apps with exposed virtual objects of
different IoT domains that can be reused in similar use cases
with little or no modifications. Arumugam et al.[13] identified
a set of decoupled, flexible independent reusable AI-centric
components across IoT domains that can be adapted and reused
in IoT apps development instead of building full stack static
IoT solutions. These components include smart contracts, AI
planner, condition monitor, and analytics components. This
approach is advantageous as its capable of shortening the time
to market, reducing development costs of IIoT solutions, and
enhancing reusability.

Reuse potentials of IoT application frameworks were examined
in Smiari et al.[6] Results of the study revealed that the most
reused functionalities are those related to device management
layer implemented as black-box reuse. In Wehlitz et al.,[7] a
device abstraction model is presented for defining business
processes across heterogeneous devices without the need for
dealing with their technical implementations. It also proposes
a system architecture for modeling, deployment, execution,
and reuse of IoT-aware business processes that are not bound
to specific device types.

In oneM2M,[33] software re-modularization technique for
discovering fine-grained microservices from enterprise
system that can be reused to create IIoT solutions is presented.
Findings reported in Elloumi[34] reiterates the benefits of the
common service layer of the oneM2M architecture in IoT
reuse. However, it further maintains that when the object data
are exchanged and reused among various application domains
in WoO enabled IoT environment, such data exchange should
be in a well-defined formats such as JSON, XML, and RDF
to derive the full benefits of the architecture.

OVERVIEW OF ONEM2M MODEL

The entity, oneM2M was launched in July 2012 as a global
organization by eight World’s leading information and
communications technology (ICT) standards development
organizations (SDOs) with the mandate to ensure the most

efficient deployment of M2M communications systems.
Consequent on this, oneM2M Model was developed to support
effective use of the emerging technology.[34] The eight ICT
SDOs that founded oneM2M are as follows: ARIB (Japan),
ATIS (United States), CCSA (China), ETSI (Europe), TIA
(USA), TSDSI (India), TTA (Korea), and TTC (Japan).

The oneM2M model takes the form of a middleware service
layer consisting of a suite of common service functions
(CSFs).[34,35] The middleware service layer lies between
applications layer and connectivity layer, as shown in Figure 1.
The oneM2M CSFs are exposed to applications and IoT
devices through RESTful APIs.

These CSFs are represented as common services which
reside within a common service entity (CSE). Services are
provided to the application entities (AEs) by CSF through
the Mca Reference point and to other CSEs through the
Mcc Reference Point.[35,36]. The oneM2M’s common service
layer is implemented as a software layer with IP transport in
the connectivity layer. However, non-IP transports are also
supported in the model through interworking proxies. The
oneM2M service layer provides 14 common functions that
can be reused in IoT application development and deployment
projects.[34-36]

The 14 functions as shown in Figure 1 include device
management, registration, security, discovery, group
management, communication management, data management
and registry, subscription, and notification. Others include
application and service management, network service exposure,
location, service charging and accounting, semantics, and
transport management. Because oneM2M follows a modular
standardization roadmap, it allows for future IoT requirements
and new common service functions to be added.[34]

FINDINGS FROM THE REVIEW

The review reveals the importance of reuse in IoT software
engineering and great successes recorded so far especially with
the introduction of WoO architecture for IoT provisioning;[14]
device abstraction model for defining business processes
across heterogeneous devices;[7] software re-modularization
technique for discovering fine-grained microservices for reuse
in creating IIoT Solution; and the oneM2M Model with 14
common services that can be reused in IoT solution projects.[34]

However, it is worth mentioning that these models, architectures,
and techniques only address basic infrastructure services across
domains with no provision for reuse of core logic services and
interoperability across domains.[34-36] This encourages vertical
approach to IoT core logic development, in which case, services
are developed and updated separately in a recurring manner for
different domains, a situation that increases the overall cost of

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 174

application development, deployment, and maintenance.[6,13,34]
In view of the above, decoupling of IoT core logics into
microservices and reusing them across domains remain a
challenging task in IoT Software engineering that calls for
solutions. Therefore, architectures, models, and techniques
designed specifically to address these challenge by supporting
reuse of core logics across domains will advance IoT software
engineering.[15,23,33,37]

In realizing this challenge, oneM2m model which is one of the
most widely used models provides for modular standardization
roadmap that allows for addition of future IoT requirements and
new common service functions.[34] Relying on this provision,
this research was designed to identify new common service
functions, in this case core logics functions that could be
added to the oneM2M model to further advance the course
of IoT reuse.

MATERIALS AND METHODS

The research work was designed as a case study research
to study software reuse in IoT software engineering. The
work comprises multiple-case study from different IoT use
cases, reviewed in the context of their structures, core logics
functions, and reuse. The cases are Gits for IoT projects from
GitHub in different use cases, namely, smart home security,
Smart road traffic management, Smart waste Management,
and Smart health-care system.

Source code of IoT applications in the aforementioned use
cases was downloaded and analyzed accordingly with emphasis
on their structures, core logics functions, and reuse.

Research Methodology
The research was conducted in the following stages:
i. Download the gits of IoT Apps in the selected use cases

from GitHub
ii. Review the codes to identify classes, modules/code blocks

that implement the core logics of the application

iii. Study the identified classes, modules/code blocks to
understand the core function(s) they perform and reuse
of such core functions in the blocks

iv. Compare the core logic functions identified in the reviewed
gits for IoT solutions from different use cases to spot
common functions if anyName the identified common
functions accordingly based on the type of functions they
perform.

v. Recommend how such common functions can be packaged
as microservices for reuse in IoT projects.

Dataset
The data for this research are gits of IoT Apps in the selected
use cases downloaded from GitHub. A total of 33 IoT apps
spread across different use cases were reviewed. A summary of
the reviewed IoT apps categorized according to use cases and
number of apps reviewed in each case follow thus: IoT-based
home automation systems (8), IoT-based air pollution monitoring
systems (5), IoT-based road traffic management system (5), IoT-
based waste management system (5), IoT-based Health monitoring
system (5), and IoT-based weather forecast system (5).

Table 1 presents a brief description of each of the IoT Apps
which source code were downloaded and used for the research
work with respect to languages used in developing the app,
lines-of-code (LOC), number of forks, number of commits,
and last updated date/latest release of the apps.

REVIEW OF DOWNLOADED SOURCE
CODES

A review of the downloaded source codes of the selected
Apps was undertaken. In this case, classes in each App were
identified and reviewed to understand the type of functionality
they provided in the App. To undertake a comprehensive
review, reused classes were also considered through a search
for “import” directives in the source code with their paths
identified as pointers to the source of the reuse components
and reviewed accordingly.

Figure 1: The oneM2M common service layer

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 175

Table 1: Description of IoT apps selected for review
S.
no

IoT application Description Languages used Lines-
of-code

Forks # Commits last updated date
/latest release

IoT-based home automation systems
1 Wallpanel-Android

(Jschollenberger/
TheTimeWalker

Android app for home
automation.

Kotlin 85.4%
Java 12.4%
Other 2.2%

9K 22 2 Updated:
April 10, 2023
Releases: 7
Latest: V0.10.5
Released on
January 15, 2023

2 Smart-Home-
App
(Lakhankumawat)

Mobile app for home
automation to controls
all home gadgets at
one tap

Dart 97.3%
C++ 1.8%
Other 0.9%

2,973 88 227 Updated:
June 26, 2023
Release:
No release
published

3 Domotics
(Gizmocuz)

Home automation
system to monitor
different parameters
like temperature, rain,
wind, gas, and alert
users accordingly

C++ 67.6%
JavaScript
16.0%
Lua 7.5%
HTML 4.7%
Python 1.3%
CSS 1.7%
Other 1.2%

6K 1.1K 360 Updated:
June 23, 2023
Releases: 14
Latest: released on
February 14, 2023d

4 Home-automation
(Danionescu)

Home automation
system using raspberry
Pi.

Python 56.6%
SCSS 22.0%
JavaScript
14.6%
C++ 6 Z.6%
Other 0.2%

6,271 8 2 Updated:
May 16, 2023
Releases:
No release
published

5 Night-patrolling
-robot
(RakshanaG)

IoT system that
detects the presence of
intruders and send live
feeds of the camera
and real-time data to
Microsoft azura for
processing.

Python 52.5%
HTML 47.5%

133 1 1 Updated: April 27,
2020
Release:
No Release
Published

6 Quxilo2 Home automation
system

C++ 94%
Make file 2.3%
Qmake 3.7%

163 1 Updated:
January 30, 2018

7 Mylisabox/
lisa-box – LISA

Home automation
system to control home
gadgets

JavaScript
99.8%
Other 0.2%

5,194 6 5 Updated:
July 8, 2022
Releases:
No release
published

8 Smart security
system
(Cyb3rG0dzilla)

Home automation
system to detect
intruders and remotely
monitor parameters
such as temperature,
humidity, gas, and
flame.

Python 99.9%
Other 0.1%

187 21 15 Updated: January
2, 2022
Releases:
No release
published

(Contd...)

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 176

Table 1: (Continued)
S.
no

IoT application Description Languages used Lines-
of-code

Forks # Commits last updated date
/latest release

IoT-based air pollution monitoring systems
1 IOT-based-air-

pollution-
monitoring
-system (ro0t×4mit)

IoT-based air pollution
monitoring system to
measure and track air
quality in real-time.

C++ 100% 349 0 3 Updated:
July 14, 2023
Release:
No release
published

2 IOT-based-
air-pollution-
monitoring-
system (Abhilash)

IoT system to detect air
pollution.

C++ 100% 243 0 13 Updated:
December 30, 2019
Release:
No release
published

3 Air-pollution
-monitor
(chelseabai)

IoT-based application
to monitor air
pollution.

JavaScript
82.5%
HTML 6.4%
C++ 11.1%

1,019 0 56 Updated:
December 21, 2021
Release:
No release
published

4 Air-pollution
-monitoring
(Sarvesh2K)

IoT-based mobile air
pollution monitoring
system

Jupyter
Notebook 89.1%
HTML 5.2%
C++ 5.2%
CSS 0.5%

3,746 1 15 Updated:
December 4, 2021
Release:
No release
published

5 IoT-based-
smart-helmet-
for-industrial
-workers
(iamkishandadhania)

IoT app to monitoring
and detect air quality and
hazardous events like
radiation leakage, gas
explosion in industrial
work environment.

C++ 100% 108 nil 1 Updated:
September 16,
2021
Release:
No Release
Published

IoT-based road traffic management systems
1 IoT-based-

smart-traffic-
light-management
-system
(ajeetpandeyy)

IoT-based system
for road traffic
management to alerts
users of alternative
pathways where
congestion occurs

Python 100% 45 4 1 Updated:
September 13,
2017

2 Aztecs-logiTraffic IoT based traffic
management and theft
detection system

Jupyter
Notebook 98.7%
Other 1.3%

1,714 1 15 Updated: May 1,
2021
Release:
No release published

3 Density-
based-two-way
-traffic-control
-with-IoT
(varshita-21)

IoT-based solution to
trigger traffic lights
based on traffic density
at road junctions and
roundabouts.

C++ 95.4%
C 4.6%

130 0 8 Updated: June 16,
2021
Release:
No release
published

4 Smart-road
-system-
using-IoT
(aparajitahalder)

IoT-based system
to run traffic signal
according to the
density of the road.

Jupyter
Notebook 100%

512 0 1 Updated:
November 28, 2019
Release: No
Release Published

(Contd...)

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 177

Table 1: (Continued)
S.
no

IoT application Description Languages used Lines-
of-code

Forks # Commits last updated date
/latest release

5 Traffic-control-
for-narrow-roads

IoT system for traffic
control on narrow
roads using tensorflow

JavaScript
82.2%
Python 17.8%

133 0 2 Updated: June 12,
2019
Release:
No release
published

IoT-based waste management systems
1 IBM smart-waste-

management-system
(IBM-Project-35221
-1660282887)

Smart waste
management system
for cities to detect
garbage level/weights
in bins and alert
authorized person
to empty the bins
accordingly.

Python 93.9%
CSS 2.3%
HTML 1.7%
JavaScript 1.2%
Nix 0.7%
Yacco 0.1%
Shell 0.1%

1,590 67 5 Updated:
May 25, 2023
Releases:
No release
published

2 Smart-waste-
management-
system
(MatthewBrandon21)

Smart waste
management system
for smart cities

CSS 55.3%
JavaScript
38.5%
C++ 5.4%
Other 0.8%

7,954 2 2 Updated:
December 19, 2021
Releases:
No release
published

3 Ecobin
(shubhajitml)

IoT based waste
management system
for smart cities

PHP 44.2%
CSS 13.0%
Python 28.1%
HTML 12.5%
JavaScript 1.3%
Hack 0.9%

9,638 7 1 Updated:
April 8, 2019
Releases:
No release
published

4 Smart-waste-
management-
system
(sumanth1974)

IoT based waste
management System

Dart 93.2%
JavaScript 1.6%
Shell 0.3%
Kotlin 0.1%
Objective-C
29%
Java 1.6%
Swift 0.3%

4,152 4 17 Updated:
October 7, 2022
Releases:
No release
published

5 Smart waste
management system
(matthewbrandon21)

Smart waste
management system
for cities

CSS 55.3%
JavaScript
38.5%
C++ 5.4%
Other 0.8%

2,709 2 36 Updated:
December 19, 2021
Releases:
No release
published

IoT-based health monitoring system
1 IoT-based-

healthcare-
system
(MohanadSinan)

IoT-based patient
health monitoring
system

C++ 100% 537 7 1 Updated:
September 23,
2023

2 HealthFog Smart healthcare
system based on deep
learning for automated
diagnosis of heart
diseases

PHP 56.1%
Python 37.4%
Shell 6.5%

450 8 44 Updated:
December 16, 2020
Releases:
No release
published

(Contd...)

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 178

Table 1: (Continued)
S.
no

IoT application Description Languages used Lines-
of-code

Forks # Commits last updated date
/latest release

3 IoT-based-health-
monitoring-system
-in-azure
(hectorTa1989)

Smart healthcare
system to monitor vital
signs such as heart-rate
and temperature. alert
patients/doctors where
abnormality exist.

Python 100% 42 0 11 Updated:
March 16, 2023
Releases:
No release
published

4 Smart-healthcare-
patient-
monitoring-system

Smart health
monitoring system to
detect vital signs

C++ 69.0%
Python 31.0%

219 4 5 Updated:
June 8, 2018
Releases:
No release
published

5 Smart-health-
monitoring-system
(hkush8289)

Android application
to calculate patient’s
BMI and provide
step counter, sleep
suggestions and other
relevant remedies for
health challenges.

Java 100% 1563 1 8 Updated:
January 31, 2020
Releases:
No release
published

IoT-based weather forecast system
1 iot-zambretti-

weather-forecasting
IoT-based system for
weather forecast

Shell 100% 16 1 6 Updated:
April 1,
2021Releases:
No release
published

2 IoT-based-weather-
reporting-system
(Rashmika-B)

IoT-based system to
monitor pressure,
temperature and
humidity, then alert
users accordingly on
possibility of rainfall

Python 100% 169 3 2 Updated: July 15,
2021Release:
No Release
Published

3 Smart-agriculture-
system-using-IoT

IoT-based app to
monitor temperature,
humidity and soil
moisture parameters
to provide guides to
farmers

Python 100% 44 5 24 Updated: August
21, 2020Release:
No release
published

4 Smart-weather-
monitoring-system

Smart weather
monitoring system

JavaScript
43.9%
HTML 24.4%
C++ 25.2%
CSS 6.5%

1,273 0 3 Updated: October
8, 2022
Release:
No release
published

5 IoT-based-Smart-
farming-using-
machine-learning

Intelligent system to
monitor temperature,
humidity and other
conditions in the farm
and advice farmers
accordingly.

Python 100% 211 1 1 Updated:
September 13,
2022
Release:
No Release
Published

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 179

Based on the type of functionality provided by the identified
classes, they were categorized into two groups, namely, classes
providing basic infrastructure functions and classes providing
core logic functions. Basic infrastructure functions include
those for setting up and managing the system infrastructure,
namely, device management, network connectivity, message
communication, and others. Core logic functions on the other
hand are those that perform the core functions of the app which
could be switching a lightbulb on/off, blowing a security alarm
or emitting dangerous items to scare intruders in the case of
smart home security or alerting a patient/doctor of abnormality
in patient’s body vitals in the case of smart health monitoring
system.

Using Smart-Home-App (Lakhankumawat) – one of the
case Apps as a case in point, some of the classes identified as
providing basic infrastructure functions include MqttMessage
for message communication, ESP8266WiFi and WiFiClient
for network connectivity and Arduino for device management.
Furthermore, some of the classes identified as providing core logic
functions include SmartFanViewModel, SmartACViewModel,
ChangeNotifier, BaseModel, intensity, PopUpAlert, and
PopUpWarning performing different core logic functions,
respectively. In line with the aim of this research, emphasis was
placed on classes providing core logic functions.

In view of the above, the process of class identification and
classification was undertaken for all gits downloaded for the
research. Core logic classes and the type of functions provided
in the apps were recorded and compared for similarities and
differences accordingly. Being that our research interest is in
common core logics, emphasis at this point was placed on
similarities among core logic functions in the reviewed Gits.

After a careful review as well as comparison and classification
of the core logic classes, four core logic functions were found
to be common among the different use cases although they
are applied differently in the use case. These are, functions
relating to:
i. Analysis of generated data from IoT devices to retrieve

those data that are relevant to the use case for further
processes. In this research, these category of functions
are termed Smart Agent Function

ii. Continuous monitoring of the system for changes and
notifying other components of changes for corresponding
actions. Accordingly, these category of functions are
designated as Condition Monitoring Function

iii. Prediction of systems behavior in line with the expectations
of the actors. For the purpose of this research, these
categories of functions are termed Predictive Analytics
Function.

iv. Planning and execution of the specified tasks using
optimization technique. Finally, these functions are
designated as AI Tasks Planner & Executor.

Table 2 shows the core logic functions and some of the classes
identified to be associated with them in the reviewed use cases.

RESULTS AND DISCUSSION

At present, there are architectures and models that support
reuse of IoT functions in IoT software development projects
of which oneM2M model is considered the most widely
adopted.[1,29,34,35] However, these models and architectures
only support reuse of infrastructural services such as device
management, connectivity, data messaging, and others thereby
making it difficult to harness the full benefits of software
reuse in IoT software engineering. With this, the need for
architectures and models beyond reuse of basic infrastructure
services, to support the reuse of core logic functions is
overwhelming.

Research findings reveal similarities in core logic
implementation of IoT apps within and across domains which
can be repackaged as common services for reuse. In view of
this, remodeling of existing common service layer models to
accommodate core logic functions will advance the course
of IoT reuse. In this research, remodeling of oneM2M model
with the identified core logic services is illustrated. Choice
of this model is due to its global acceptability and use among
practitioners.

Figure 2 presents the proposed remodeled oneM2M common
service layer with two extended IoT basic services and four
IoT core logic services added to the existing fourteen services
in the oneM2M model. A brief description of these services
follows thus:

IoT Basic Services
The 14 oneM2M Common Services are maintained in the
remodeled common service layer where they are designed as
IoT basic services. They are to serve the purpose for which
they were intended and in a manner designed in the existing
oneM2M model.

IoT Core Logic Services
The core logic services are services needed to perform the
core functions of IoT apps. Research findings reveal that
these functions are applicable to all gits in different use cases
reviewed and implemented using classes in the source code
without reused potentials across domains since they are not
provided in the common service layer. Having these services
repackaged into microservices as a collection of common core
services in the common service layer will provide for easy reuse
of these important functions across domains. Accordingly, the
four core logic functions identified in this research are provided
for in the remodeled layer as IoT core logic services. These
services are explained thus:

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 180

Table 2: Identified core logic functions for gits reviewed in different use cases
IoT use case Common core logic 1

(smart agent)
Common core logic 2
(condition monitor)

Common core logic 3
(Predictive Analytics)
with real-life scenario

Common core logic 4
(AI tasks planner and
executor) with real-life
scenario

IoT-based
home
automation
system

Function performed: Analyze
generated data and retrieve
data relevant to automated
home in the covered area.
Some of the classes identified
in reviewed gits:
SmartFanViewModel
SmartACViewModel
SmartLightViewModel
SmartSpeakerViewModel
SmartTV
UploadImage
DeviceList
ColorPickerSheet

Function performed: Monitor
the system and notify other
components of changes in the
home and required actions to
be taken.
Some of the classes Identified
in reviewed gits:
ChangeNotifier
BaseModel
TimeContainer
ElectricityUsage

Function Performed:
Predict systems
behavior inline with
the expectations of the
actors, for example,
1. suspicious movement

detected, home might
be attacked

2. i ncreasing smoke
intensity, home might
be ablaze

Some of the classes
Identified in reviewed
gits:
intensity
WeatherContainer
Consumption

Function Performed: Plan
and execute the specified
tasks using optimization
technique, for example,
Suspicious movement:
- Notify house owner/

security agents
- Raise security alarm
- emit dangerous

substances to scare/
dispel intruders

Increasing Smoke
Intensity:
- Notify house owner/fire

service
- Raise fire alarm
- Activate fire extinguisher

to quench fire
Some of the classes
Identified in reviewed
gits:
PopUpAlert;
PopUpWarning
SavingsContainer
AddEventDialog;
SplashScreen

IoT-based
air pollution
monitoring
system

Function performed: Analyze
generated data and retrieve
data relevant to air pollution
monitoring in the covered area.
Some of the classes identified
in reviewed gits:
Get_value
Upload
PostpollutionData
FetchPollutionData

Function performed: Monitor
the system and notify other
components of changes in air
pollutants and required actions
to be taken.
Some of the classes identified
in reviewed gits:
loop
ParseData
MonitorPollutantLevel

Function performed:
predict systems
behavior inline with
the expectations of the
actors, for example,
Increasing contents of
pollutants in the air
like carbon monoxide,
nitrogen dioxide (NO2),
Sulfur Dioxide (SO2),
fine particulates (PM2.5)
1. Air Pollution is

imminent
Some of the classes
identified in reviewed
gits:
setPollution
pollutionModel
computeAirQuality
calculate_aqi

Function performed:
plan and execute the
specified tasks using
optimization technique,
for example,
Increasing contents of
pollutants in the air like
- alert concerned

authorities
- block source of

pollutants where
possible

- refresh the air
Some of the classes
identified in reviewed
gits:
pollutionPieChart
SensorLineChart
pollutionLineChart
printAirQuality
gradient_descent

(Contd...)

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 181

Table 2: (Continued)
IoT use case Common core logic 1

(smart agent)
Common core logic 2
(condition monitor)

Common core logic 3
(Predictive Analytics)
with real-life scenario

Common core logic 4
(AI tasks planner and
executor) with real-life
scenario

IoT-based
road traffic
management
system

Function performed: Analyze
generated data and retrieve
data relevant to Road Traffic
management of the covered
area.
Some of the classes identified
in reviewed gits:
videoCapture
car_cascade

Function performed: Monitor
the system and notify other
components of changes in
the road traffic and required
actions to be taken.
Some of the classes identified
in reviewed gits:
detectMultiScale
getStructuringElements
reshape_ipts

Function performed:
predict systems
behavior inline with
the expectations of the
actors, for example,
1. long queues of

vehicles detected;
traffic gridlock is
imminent

2. road blockage by
faulty trucks detected;
gridlock is imminent

3. road accident
detected; gridlock is
imminent

Some of the classes
identified in reviewed
gits:
PredictTtrafficStatus

Function performed: plan
and execute the specified
tasks using optimization
technique e.g.
Detected long queues of
vehicles
- Alert commuters of

alternative routes
- Alert Road Safety

Agency
- extend duration of traffic

flow on affected road to
ease traffic

Some of the Identified
classes identifies in
reviewed gits:
VideoCapture
Car_cascade
DataExtract
DataVisualise

IoT-based
smart waste
management
system

Function performed: Analyze
generated data to retrieve
data that are relevant to Waste
Management of the covered
area.
Some of the classes identified
in reviewed gits:
HX711
DistanceSensor
GPS_info
TopContainer
BinDetails

Function performed: Monitor
the system and notify other
components of changes in
deposited waste and required
actions to be taken.
Some of the classes identified
in reviewed gits:
myCommandCallback
myCommandPublsihCallback
BinDetailsState
AvailableBins

Function performed:
predict systems
behavior inline with
the expectations of the
actors, for example,
Increasing level of
generated waste
- waste management
safety might be exceed
Some of the classes
identified in reviewed gits:
myOnPublishCallback
DirectionMaps
Message

Function performed: plan
and execute the specified
tasks using optimization
technique, for example,
Increasing level of
generated waste
- Alert concerned
authorities
- empty waste bins
Some of the classes
identified in reviewed gits:
cleanAndExit
Splash
mensajeToken

IoT-based
health
monitoring
system

Function performed: Analyze
generated data and retrieve
data relevant to health
monitoring of the covered area.
Some of the classes identified
in reviewed gits:
Read_temp
detectMultiScale
readVitals

Function performed: Monitor
the system and notify other
components of changes in
patient’s health status and
required actions to be taken.
Some of the classes identified
in reviewed gits:
arduinoSerialMonitorVisual
SerialOutputWhenBeatHappens
loop

Function performed:
predict systems
behavior inline with
the expectations of the
actors, for example,
Abnormal status of body
vitals:
- increasing blood

pressure, sugar level;
health challenge is
imminent

Some of the classes
identified in reviewed gits:

Function performed: plan
and execute the specified
tasks using optimization
technique, for example,
Abnormal status of body
vitals:
- Alert Doctor/patient
Some of the classes
identified in reviewed
gits: sendDataToSerial
SerialOutput
filterWarnings
imShow

(Contd...)

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 182

Table 2: (Continued)
IoT use case Common core logic 1

(smart agent)
Common core logic 2
(condition monitor)

Common core logic 3
(Predictive Analytics)
with real-life scenario

Common core logic 4
(AI tasks planner and
executor) with real-life
scenario

setup
heartModel
train_test_split
BaggingClassifier
cascadeClassifier

IoT-based
weather
forecast
system

Function performed: Analyze
generated data to retrieve data
relevant to weather forecast for
the covered area.
Some of the classes identified
in reviewed gits:
createTemperatureGauge
createHumudityGauge
readBMP180

Function performed: Monitor
the system and notify other
components of changes
in weather conditions and
corresponding actions.
Some of the classes identified
in reviewed gits:
loop
weatherMonitor

Function performed:
predict systems
behavior inline with
the expectations of the
actors, for example,
Abnornal weather data:
- increasing volume of

rainfall, flood may
occur

- cloudy atmosphere,
rain may fall

Some of the classes
identified in reviewed
gits:
predict
predictWeather

Function performed: plan
and execute the specified
tasks using optimization
technique, for example,
Abnornal weather
recorded data:
- Alert concerned

authorities
Some of the classes
identified in reviewed gits:
createTemperatureChart
createHumudityChart
sendNotification

Smart agent
This service is responsible for preliminary analysis of generated
data to retrieve those data that are relevant to the use case. Since
this function is performed by every IoT App, presenting it as a
common service that can be reused by developers will further
reduce development time and efforts.

Condition monitor
It refers to service that monitors the IoT system continuously
to detect changes and notify smart agent and AI task planner
and executor of the changes and corresponding actions to be
taken. In every IoT use cases, there is need to monitor changes
and respond to it accordingly. For instance, in the case of

Figure 2: The proposed remodeled oneM2M common service layer

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 183

smart home security, continuous monitoring of the system will
detect the presence of an intruder and notify other components
accordingly. Furthermore, presenting this as a common service
that can be reused is advantageous as it’s capable of reducing the
development time and efforts while enhancing product quality.

Predictive analytics
This service defines/predicts systems behavior inline with the
expectations of the actors. It uses predictive analytics for its
predictions. Using analytical models, the service could defines/
predicts the possible state of the systems based on generated
data. Developers will benefit more from having this as a
common service that can be reused in IoT development and
deployment projects.

AI tasks planner and executor
This services uses optimization method to plan the task to
be executed and execute the optimized solution accordingly.
Following the predicted state of the system, this service will
generate the possible course of actions needed in the circumstance
and execute the ones considered to be the optimized solution. For
instance, in the case of smart home security, taking suspicious
movement as an example, possible course of actions could be
notify house owner/security agents, raise security alarm, and
emit dangerous substances to scare/dispel intruders.

In this circumstance, the AI Task planner and executor will
execute the one considered to be optimal solution say raise
security alarm; in some cases, all of the generated options could
necessary in the given circumstance and executed accordingly.
Having a common service of this category in the common
service layer for reuse will be of great advantage.

Extended IoT Basic Services
In terms of extended basic IoT services, two services are
proposed namely, IoT app user interface and device unification
and control which are explained thus:

IoT app user interface
This service will provide the required components for creating
the application user interface which include maps, things card,
things list, measured values, event list, timeline, and sensor
charts. Although these components are available in application
enablement platforms as plugins that can be reused[1,6] providing
them as services in the common services layer will increase
developers productivity and reduces development time.

Johnson et al.[38] maintains that by decoupling the UI and APIs
from the logic and data sources of a microservice, the location
of data processing or function performance may be conveniently
and easily changed without modifying the implementation
of use cases that utilize these functions. In other words, data
processing may be performed anywhere without affecting how it
is subsequently requested and/or used, and without constraining

the performance to a particular location. This is an important
benefit that this proposed remodeling seeks to achieve.

Device unification and control
The key challenge of IoT development is the difficulty in
developing IoT apps that can easily connect with a plethora
of technologies and devices from different manufacturers that
can work together as a unified system. Device unification and
control service is needed to address systems interoperability
challenge. Having a dedicated service for device unification
and control in the common layer that standardizes the use
heterogeneous devices from different manufacturers in a
unified system will address this interoperability challenges.
In this case, this service will be a collection of software
components that can easily detect heterogeneous devices
connected to the system to enable them work as a unified
system that promote interoperability.

IMPLEMENTATION OF THE PROPOSED
REMODELED COMMON SERVICES

LAYER

The remodeled common service layer is implemented as a
middleware service layer where the three categories of functions
are presented as microservices. The functions can be developed
using suitable IoT programming languages, repackaged into
containers, and exposed as services that are accessible through
oneM2M REST API (i.e., Representational state transfer) API.
This can be achieved in the following simple steps:
i. Using a suitable microservice framework, for example,

spring boot and flask create the microservice say smart agent
that implements the smart agent function across domain.
Choice of the framework depends on the programming
language to be used in coding the IoT logic function.

ii. Containerize the microservice together with the supporting
REST API using a container tooling kit like Docker or any
as may be considered suitable by the developer.

iii. Point the container image to the cloud pointer using
appropriate configurations and deployment rules required
to make it accessible through the REST API.

The oneM2M RESTful API provides the means of communication
between the CSE and the AEs as indicated in the oneM2M
Restful Architecture given in Figure 3. AEs refers to any entity
in the application layer that implements an M2M service
logic. Examples of AEs are an instance of smart home system,
remote health monitoring system, and smart waste management
system. With the proposed remodeling of the oneM2M model,
implementation of the service logic at AE will be easier through
reuse of common core logics from the CSE. The CSE represents
an instance of the set of “common service functions” of the
oneM2M service layer. The remodeled common service layer
provides a richer set of common services which are the three

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 184

categories of common services, namely, the 14 IoT basic services,
2 extended IoT basic services, and 4 IoT core logic services.

The network services entity (NSE) of the architecture provides
the following services from the underlying network to the CSEs,
namely, location services, device triggering, and sleep modes. The
figure also indicates reference points, which are interfaces between
service providers. There reference points are Mca – interfacing
between CSE and AE, Mcn – interfacing between CSE and NSE,
Mcc – interfacing between CSE and CSE, and Mcc’ – interfacing
between CSE and CSE in different network infrastructures.

Furthermore, the communication between CSEs and AEs:
Communication between the CSEs and AEs is through the
oneM2M RESTful APIs. The oneM2M RESTful APIs handle
create, retrieve, update, delete, and notification operations
between the layers. Communication can originate from an
AE or a CSE depending on the type of operation which may
occur through the exchange of primitives across three reference
points, namely, Mca, Mcc, and Mcc’.

CONCLUSION

Reuse in IoT software engineering is currently challenged
by lack of models and architectures to support reuse of
core logic functions within and across domains. Hence, IoT
reuse is limited to the reuse of infrastructure services. In this
research, four core logics functions common to IoT solutions
across different use cases that can be repackaged as common
layer services for reuse are identified. These services include
smart agent, condition monitor, predictive analytics, and AI
tasks planner and executor. Furthermore, two other services
needed to extend the IoT basic services have been identified,
namely, device unification and control as well as IoT UI
services. To advance the course of IoT reuse, remodeling of
existing common service layer models like oneM2M model to
incorporate these identified services is proposed.

In view of this, since the contributions of oneM2M model
are significant in IoT reuse and widely adopted, it’s further

remodeling as proposed in this research to support the reuse
of core logics will be of great benefits in terms of enhanced
developers’ productivity and products quality as well as
reduced development time and costs.

RECOMMENDATIONS

The following recommendations are necessary:
i. Implementation of the remodeled oneM2M common

service layer to include the proposed four common core
logic services and the two extended basic services as
additional services is highly recommended.

ii. Further, research efforts aimed at enhancing the process of
creating common core logic services and extended basic
services for reuse are also recommended.

iii. Furthermore, further research efforts aimed at discovering
more core logic functions from IoT systems to boast the
quality of core logic reuse is highly recommended.

REFERENCES

1. Bhavana BC, Vathsala GC, Rakshitha BH. A survey: Internet of
things (IOT) technologies, applications. Int J Res Appl Sci Eng
Technol 2022. [Last accessed on 2023 Mar 15].

2. Krishna V, Padshah KS. Current internet of things: A modernity.
Int J Creat Res Thoughts (IJCRT) 2023. [Last accessed on 2023
Jul 12].

3. Sorri K, Mustafee N, Seppänen M. Revisiting IoT definitions:
A framework towards comprehensive use. Technol Forecast Soc
Change 2022;179:121623.

4. Patel A. Unlocking the Power of IoT for Your Business. Forbes
Technology Council Post; 2023. [Last accessed on 2023 Jul 12].

5. Statista. Number of Internet of Things (IoT) Connected Devices
Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030;
2016. [Last accessed on 2022 May 10].

6. Smiari P, Bibi S, Feitosa D. Examining the reuse potentials of
IoT application frameworks. J Syst Software 2020;169:110706.

7. Wehlitz R, Jauer F, Rößner I, Franczyk B. Increasing the Reusability
of IoT-Aware Business Processes. Vol. 22. Annals of Computer
Science and Information Systems, ACSIS; 2020. p. 17-22. [Last
accessed on 2022 May 10].

Figure 3: RESTful architecture (Source:[35])

Ekanem and Agbele: Core logic services for enhanced IoT reuse

 Available at www.aujst.com 185

8. Ekanem BA, Woherem E. Dealing with Components Reusability
Issues as Cutting-edge Applications Turn Legacy. In: SAI
Computing Conference Proceedings 2016, London, UK.

9. Mäkitalo N, Taivalsaari A, Kiviluoto A, Mikkonen T, Capilla R.
On opportunistic software reuse. Computing 2020;102:2385-408.

10. Capilla R, Gallina B, Cetina C, Favaro J. Opportunities for
software reuse in an uncertain world: From past to emerging
trends. J Software Evol Pract 2019;31:e2217.

11. Ekanem BA, Agbele KK. A review of software components
identification methods and quality assessment criteria. Eur J
Appl Sci 2021;9:194-209.

12. Smiari P, Bibi S, Feitosa D. Examining the Reusability of Smart
Home Applications: A Case Study on Eclipse Smart Home. In:
Conference Proceeding, 18th International Conference on Software
and Systems Reuse; 2019. [Last accessed on 2022 May 10].

13. Arumugam SS, Badrinath R, Herranz AH, Höller J, Azevedo CR,
Xiao B, et al. Accelerating Industrial IoT Application Deployment
through Reusable AI Components. In: Computer Science 2019
Global IoT Summit (GIoTS); 2019. [Last accessed on 2022 May
10].

14. Jarwar MA, Kibria MG, Ali S, Chong I. Microservices in web
objects enabled IoT environment for enhancing reusability.
Sensors (Basel) 2018;18:352.

15. Industry IoT Consortium. Advancing the Industrial Internet
of Things. Industry IoT Consortium White Paper; 2023. [Last
accessed on 2023 Jul 12].

16. Naghib A, Navimipour NJ, Hosseinzadeh M, Sharifi A.
A comprehensive and systematic literature review on the big
data management techniques in the internet of things. Wirel
Netw 2023;29:1085-144.

17. Lekidis A, Stachtiari E, Katsaros P, Bozga M, Georgiadis CK.
Model-based design of IoT systems with the BIP component
framework. Softw Pract Exp 2018;48:1167-94.

18. Nastic S, Sehic S, Vogler M, Truong HL, Dustdar S. PatRICIA-A
Novel Programming Model for IOT Applications on Cloud
Platforms. In: Proceedings of the IEEE 6th International
Conference on Service-Oriented Computing and Applications
(SOCA), Koloa, HI, USA; 2013. p. 53-60.

19. Alayaa MB, Banouara Y, Monteila T, Chassota C, Driraa K.
OM2M: Extensible ETSI-compliant M2M service platform with
self-configuration capability. Proc Comput Sci 2014;32:1079-86.

20. Swetina J, Lu G, Jacobs P, Ennesser F, Song J. Toward a
standardized common M2M service layer platform: Introduction
to oneM2M. IEEE Wirel Commun 2014;21:20-6.

21. Bonino D, Alizo M, Alapetite A. Almanac: Internet of Things
for Smart Cities. In: Proceedings of the 2015 3rd International
Conference on Future Internet of Things and Cloud (FiCloud),
Rome, Italy; 2015.

22. Newman S. Building Microservices: Designing Fine-Grained

Systems. Sebastopol, CA, USA: O’Reilly Media, Inc.; 2015.
23. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M.

Internet of things: A survey on enabling technologies, protocols,
and applications. IEEE Commun Surv Tutor 2015;17:2347-76.

24. Alaya MB, Medjiah S, Monteil T, Drira K. Toward semantic
interoperability in one M2M architecture. IEEE Commun Mag
2015;53:35-41.

25. Girau R, Martis S, Atzori L. Lysis: A platform for IoT distributed
applications over socially connected objects. IEEE Internet
Things J 2017;4:40-51.

26. Spalazzese R, Pelliccione P, Eklund U. Intero: An interoperability
model for large systems. IEEE Softw 2017;37:38-45.

27. OEP. Achieving Semantic Interoperability Using RDF and
OWL-v10; 2017. Available from: https://www.w3.org/2001/sw/
bestpractices/oep/semint [Last accessed on 2017 Sep 19].

28. LogMeIn. Best IoT Platform Solution: Xively by LogMeIn.
Available from: https://www.xively.com/xively-iot-platform
[Last accessed on 2018 Jan 11].

29. SimfonyBlog. IoT Platforms: Vertically versus Horizontally
Layered Architecture, Simfony Mobile; 2018. [Last accessed
on 2022 Apr 08].

30. Martín C, Hoebeke J, Rossey J, Díaz M, Rubio B, Van den
Abeele F. Appdaptivity: An internet of things device-decoupled
system for portable applications in changing contexts. Sensors
(Basel) 2018;18:1345.

31. Ahmad S, Mahmood F, Mehmood A, Kim D. Design and
implementation of decoupled IoT application store: A novel
prototype for virtual objects and discovery. Electronics
2019;8:285.

32. Alwis AA, Barros A, Fidge C, Polyvyanyy A. Microservice
Remodularization of Monolithic Enterprise Systems for
Embedding in Industrial IoT Networks. In: Advanced
Information Systems Engineering 33rd International Conference,
CAiSE 2021, Melbourne, VIC, Australia; 2021. p. 432-448.

33. oneM2M. oneM2M Basics. [Last accessed on 2022 Apr 15].
34. Elloumi O. OneM2M and Its Role in Achieving Interoperability

in IoT. In: Regional Standardization Forum for Bridging the
Standardization Gap (BSG), Riyadh, Saudi Arabia; 2017.

35. Mediawiki. OneM2M Overview; 2023. [Last accessed on 2023
Jul 12].

36. Babaria U. Why IoT Development Needs Microservices and
Containerization. eInfoChips Publication; 2019. [Last accessed
on 2020 Aug 11].

37. oneM2M. oneM2M Is the Global Standards Initiative for
Machine to Machine Communications and the Internet of Things;
2018. [Last accessed on 2023 Apr 12].

38. Johnson C, Maes HS, Kim W. Microservice with Decoupled
User Interface. United States Patent Application Publication;
2017. [Last accessed on 2020 Jun 18].

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0
International License.

