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ABSTRACT

Building energy management systems is a centralized platform for managing building energy usage. They can detect and remove waste and 
ensure the efficient use of electricity resources. The use of widely dispersed sensors enables monitoring ambient temperature, lighting, room 
occupancy, and other inputs required to manage climate control (heating, ventilation, and air conditioning), security, and lighting systems. The 
three main goals of building energy management are proper management of building energy usage, reducing electricity bills, and environmental 
stewardship improvement without adversely affecting living standards. We focus on the largest electricity consumers in residential buildings, 
i.e., lighting in this paper. The efficient management of load categories will result in substantial savings in electricity expenditure and energy use.
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INTRODUCTION

Smart buildings are categorized by three lineaments[1] i.e., 
automatically controlled, the embodiments of occupant 
preferences and feedback, and learning ability. This 
environment is distinguished by a tight coupling of HVAC, 
security, lighting, and fire protection systems. They are sensor-
rich and produce large amounts of data that can be analyzed 
to predict occupant behavior and detect equipment faults. 
This intelligence is convenient as it lessens the complexity 
of supervising and computing the vast numbers of agents; it 
facilitates the agents to adapt to changing occupant needs or 
environments; and it frees occupants from requiring an in-
depth understanding of the system or having to make complex 
decisions.[2] Automation systems for buildings serve centralized 
management of climate control, lighting, and security systems 
to enhance energy efficiency and provide serenity. These 
techniques minimize energy misuse and costs while boosting 
output.[3,4] They also serve remote building management as 
well as improved occupant safety and security.[5,6] Sensors 
and actuators are an essential part of the building-automation 
network. These devices act such as the eyes, ears of the system. 

Unfortunately, wiring costs frequently overshoot sensor cost[7] 
so, Zigbee- the low-cost wireless communication schemes[8] 
is cost-effective wireless sensors and actuators throughout a 
building. Wireless sensor and actuator networks (WSAN)[9] 
have these features: battery-powered, low-cost; low-energy 
consumption (EC); short-range communication facilities; 
limited sensing, and computation capabilities.

Objective
The study’s objective was to assess the Radial Basis Function 
Network (RBFN) for Smart Lighting of Residential Buildings.

SMART LIGHTING SYSTEM

Lighting absolves 28% of all commercial building electricity 
spending (US Department of Energy) and denotes a probable 
energy reserves source. These systems also unswervingly affect 
workplace coziness and occupant efficiency.[10,11] Developments 
to lighting systems promise substantial energy and cost savings 
and better occupant coziness. A significant amount of research 
has been steered on energy-efficient illumination. The goal is to 
lessen energy convention. WSAN’s addition to lighting systems 
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licenses granular control of lighting, letting modified control 
of residential lighting. A lighting control system’s purposes 
are the living room’s illumination, ambiance, and security.[12] 
The system diagram of the smart lighting control system is 
provided in Figure 1. Lighting systems consist of bulks and 
luminaires or lighting fittings. Ballasts deliver the start-up 
voltages essential for lamp ignition and control current flow 
through the bulb. Newer ballasts permit fluorescent dimming 
using analog or digital approaches, controlling illumination 
production. It has been revealed that the human eye is oblivious 
to the dimming of lights by 20%. In contrast, the dimming is 
performed at slow rate, thereby allowing substantial energy 
usage savings.[13]

Sensors
Sensors serving as the intelligent environmental control 
system’s eyes and ears let the system sense and retort to 
actions in its environment. The most usually utilized sensors 
are occupancy and photosensors, though some systems include 
smart tags to detect and path occupants. So far, these smart 
tag-based systems are yet to increase extensive acceptance due 
to privacy concerns. Ultrasonic and Passive Infra-Red sensors 
used sensors occupancy primarily. Photosensors distinguish 
the amount of ambient light and use this information to find 
out the amount of artificial lighting essential to uphold total 
ambient lighting at a distinct value. Therefore, photosensors 
are a vital component of daylight systems.[14,15]

Lighting Control Approaches
On/off control, setting up, occupancy detection, and dimming 
are basic lighting control modes. More innovative schemes 
include daylight harvesting, task tuning, and demand response. 
Daylight harvesting involves measuring the amount of ambient 
light and harnessing ambient light to reduce the amount of 
artificial lighting obligatory to preserve light at a pre-set level. 
Task tuning involves adjusting the light output according 
to the tasks performed.[16,17] Demand response is dimming 
output according to utility signals. Smart lighting control 
systems gather digital control system with computation and 
communications systems. The result is cost-friendly but highly 

suitable lighting system. These systems were plotted and the 
terminology of the systems is provided in Figure 2.

Centralized smart lighting schemes carry faster performance 
and lower convergence times than decentralized arrangements, 
but this faces single-point failure issues. A summary of the 
various systems is provided in Table 1.

Prioritization
This is the most basic smart lighting method, where 
incompatible occupant lighting requirements are set by 
identifying user urgencies. In this method, area-based lighting 
arrangements are fixed by the highest status. WSAN-based 
lighting monitoring and control testbed was used with pre-
defined user priorities.

Influence diagram
An influence diagram is a graphical illustration of the 
relationship between decision variables. The relationship 
between decision variables is marginal and conditional 
probabilities, permitting the Bayes rule for decision-making. 
Influence diagrams have three nodes, i.e., state, value, and 
decision node. Decision nodes are noted by rectangles and 
represent the control actions available to controllers of the 
system. State nodes are symbolized by ellipses and represent 
uncontrollable and uncertain events.

These nodes rank the different choices available to the system 
controller based on the current system. The optimal decision 
is the choice that maximizes (or minimizes) the selected cost 
function. Arcs denote the interrelations among nodes of the 
system. Input arcs from state nodes to decision nodes represent 
the information available to decision nodes or controllers at 
decision time. In contrast, arcs from decision nodes to state 
nodes point to causal affairs. An influence diagram for smart 
lighting control is shown in Figure 3 and shows the numerous 
states, decision nodes, and the system’s input.[18,19] utilize 
influence diagrams to offer smart decision-making skills for 
WSAN-based lighting systems.

Figure 1: Smart lighting system Figure 2: Smart wireless lighting control
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Figure 3: Influence diagram for smart lighting control

Their systems operated dimmable ballasts and were able 
to satisfy conflicting occupant preferences in shared 
workspaces.

Linear programming
This is the most common outline for lessening lighting EC, 
subject to the limitation of satisfying user necessities. It 

maximizes or minimizes an objective function subject to 
restraints, and there is a huge collection of experiments in 
this zone. For instance,[20,21] formed an illuminance model 
of the room to be lighted. This model captured the effect of 
each luminaire on work surface lighting. Their objective was 
to minimize work surface illuminance levels subject to the 
satisfaction of current room occupants’ lighting preferences. 

Table 1: Comparison of smart lighting control systems
Index Prioritization Influence diagrams Linear programming Multi-agent systems
Overview Conflicts resolved 

by deferring to the 
highest priority user 
present

Complex 
interrelationships 
Formulated using 
simple graphs, 
Non-deterministic 
decision-making

Effective optimization 
system for modeling 
and sufficient competing 
objectives

Idyllic for environments 
where learning and 
prediction are essential 
while interrelationships 
between system parameters 
are either unknown or not 
well-defined

Approach Node prioritization Bayesian probabilities Linear optimization, 
scalarization

Artificial Intelligence, 
Neural networks, expert 
systems

Response 
time

 Fastest Quick response Quick response Average

Scalability Centralized 
architecture which 
bounds scalability 

Centralized 
architecture which 
bounds scalability and 
produces single-point 
failures

Centralized architecture 
which bounds 
scalability and produces 
single-point failures

Very scalable because of 
distributed construction

Weaknesses Can guarantee 
ease for a single 
occupant

Probability need to 
have resulted via 
experimentation

Optimization issue 
formulation is a 
non-trivial task

Not any wireless system 
presently deployed due 
to the complexity of the 
problem



Azad, et al.: Implementation of RBFN for smart lighting

 Available at www.aujst.com 32

Their system computes the optimal linear combination of 
individual illuminance models and lighting levels, minimizing 
energy usage.

Multi-agent Systems
Multi-agent systems utilize huge numbers of autonomous 
smart agents that cooperate in providing decentralized control 
of complex tasks. These schemes incorporate the advantages 
of influence diagram-based lighting control schemes without 
requiring centralized control. Their advantages include 
scalability, self-configuration, and adaptation utilizing machine 
learning techniques-a theoretical framework for such a system 
was proposed by.[22,23] RBFN is included in the evolutionary 
multi-agent system.

RBFN
RBFN offer a striking substitute to BP networks.[24] They 
accomplish admirable approximations for curve fitting 
problems and can be trained easily and quickly.RBFN 
generally exhibits a slow response in the recall phase due 
to the large number of neurons associated with the second 
coating.[25,26] Linear weights with the output layer can be 
treated separately from the hidden layer neurons in RBFN. 
As the secreted layer weights are adjusted through a nonlinear 
optimization, output layer weights are adjusted by linear 
optimization. RBFN accuracy and speed may be further 
upgraded by selecting the proper centers and widths of the 
interesting fields. The reallocation of centers to locations 
where input training data are meaningful can lead to more 
effective RBFN.[27]

Meanwhile, the hidden layer contains nonlinear transformation 
and linear combiner functions. However, suppose the following 
pair of Gaussian hidden functions are defined:
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If we calculate h1 (x), h2 (x) for the above input shapes, we 
will have Table 2. Figure 4 shows the graph of the outputs in 
the h1–h2 space.

The XOR problem in h1–h2 space is drawing to a new problem, 
which is linearly detachable. Therefore, Gaussian functions 
can be used to solve the above interpolation problem with a 
one-layer network. Suppose there exist N points (X1., XN) and 
N set’s real values (d1, d2, d3……………., d1); find a function that 
pleases the following condition:

F(xi)=di;i=1, 2,…………., N (1)

Figure 5 shows a simple radial basis network. This network 
is a feed forward network similar to back propagation, but it 

has a different performance. The first difference is the initial 
weights. The initial weights are not chosen randomly despite 
the random initial selection of the weights in back propagation. 
Hidden layer weights are set to values that produce the chosen 
response. Such weights are allocated so that the network offers 
the maximum output equal to its weights. The activation 
functions hi can be:
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Di is notated as the cente’s input distance recognized by the 
weight vector of hidden layer neuron i.
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x : input vector

u : Wieght vector of  hidden layer neuron i

= − −
 (3)

Hence, the Neuron’s final influence will decrease for the 
inputs far from the center. It is practical to offer the values of 
each input of the training set to a neuron, which will be the 
network’s faster training. The key part of the training of the 
system is fine-tuning the weights of the output layer. Figure 6 
shows a single neuron.

Table 2: Mapping of XY to h1–h2

Input pattern: X h1(x) h2(x)
(1.1) 1 0.1353
(0.1) 0.3678 0.3678
(0.0) 0.1353 1
(1.0) 0.3678 0.3678

Figure 4: XOR Problem in h1–h2 Space.

Figure 5: A simple radial basis network
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Function h (x), as shown in Figure 7, can be defined as follows:
2

2
(x u)

2
xh  e

−
σ=  (4)

As both graph and formula show-
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The above formula specifies that each Neuron only owns 
contributions from the inputs near the center. For additional 
values of x, the Neuron will have zero output value without 
any contribution to the network’s final output. Figure 8 shows 
a radial basis neuron with two inputs, X1 and X2.

Figure 9 displays the three-dimensional graph of this Neuron. 
As seen, the fundamental idea is similar. As Figure 8 displays, 
the function is radially symmetrical around the center U.

Training of the radial basis network includes two stages. In the 
first stage, the centerUi and diameter of receptive σi of each 
Neuron will be assigned. At the second stage of the training, 
the weight vector W will be adjusted accordingly. After the 
training phase is completed, the next step is the recall phase 

in which the outputs are applied, and the actual outputs of the 
network are produced.

Finding the Center Ui
One of the most popular approaches to locate the centers Ui is to 
divide the input vector into some clusters and then find the center 
of each cluster and locate a hidden layer neuron at that point.

Finding the Diameter of the Receptive Region
The value of σ can have a striking effect on the act of the 
network. There are different approaches to find this value. 
One of the popular methods is based on the similarity of the 
clustering of the input data. For each hidden layer neuron, 
each Neuron’s RMS distance and its nearest neighbor will be 
considered; this value is denoted as σ. The training phase of 
RBFN can be briefed as follows:
1. Apply an input vector X from the training set.
2. Calculate the output of the hidden layer.
3. Calculate the output Y and compare it to the chosen value. 

Adjust each weight W accordingly:
 wij (n+1)= wij (n) + ƞ.(xj−yj)xi (6)
4. Repeat 1–3 for each vector in the training set.
5. Again, repeat 1–4 till error is lesser than a maximum 

tolerable amount.

The advantage of a radial basis network is faster training. 
Backpropagation’s main problem is its lengthy training; 
therefore, radial basis networks have caught a lot of attention 
lately.

IMPLEMENTATION

The daylight illuminance model matrix is created by 
illuminance contribution from daylight. According to the 
standard, the plane is designed with measurement points, where 
the maximum distance between points can be calculated based 
on EN12464-1. The illuminance values on points will form 

Figure 7: The Graph of h (x)

Figure 6: A simple radial basis neuron

Figure 9: Graph of h (x,y) for the neuron having two inputsFigure 8: A simple radial basis neuron with two inputs
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the daylight illuminance matrix (Edaylight) and can be stated as 
follows:

1,1

day

1,N

M,1 M
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Here, Em,n is the illuminance level contributed from daylight 
for each measurement point.

The illuminance vector (E) can be obtained as follows:

E = Edaylight× d (8)

Where, E =[E1 L EN ]T s the vector of illuminance is measured 
on the working plane andd = [d1 L dk]

T is a vector of the 
dimming levels of luminaires, and K is the number of Kth 
luminaires. The study’s main objective is to minimize 
luminaires’ dimming levels while maintaining the visual 
performance and comfort of occupants in the building. The 
visual performance refers to average illuminance levels (E). 
The objective function can be formulated using equation.[9] In 
this case, the lighting control system was divided into several 
controlling zones. The zones are determined by the number 
of light sensors installed in the room,[28] It means, practically, 
a sensor will control several numbers of luminaires in the 
room. This concept is similar to lighting control by manual 
switches. The smaller number of light sensors installed will 
minimize the initial cost. The locations of the sensors were 
place based on the light sensor placement guide in.[29,30] The 
objective function, which is the dimming levels of luminaires, 
can be expressed as follows:

dk = (EFB – EFOV,k)/EFB, k = 1, 2, 3…K (9)

Where EFB is maximum illuminance levels when a luminaire 
is “on”and EFOV,k is the average illuminance value within the 
field of view of Kth sensor. Based on the result calculated in the 
equation, the average illuminance levels (E) can be determined 
using equations (10) as follows:

E j
j

N

N
E

 � ��1

1
 (10)

The value of dimming levels is in the range of 0 to 1. 0 
refers to the ‘off’ condition, while 1 refers to the lamp’s 
highest brightness level. The dimming level of luminaire 
capabilities relies on the type of luminaire and can be 
referred to as the luminaire datasheet provided by luminaire 
manufacturers.[31,32] The control signal has a linear relation with 
the LED luminaire’s energy consumed. As a result, the total 
EC of lighting concerning the luminaires dimming levels can 
be defined as follows:

EC P d
k k

k

k

�
�� 1

 (11)

Pk is the total rated power of luminaires in the Kth zone, and dk 
is dimming luminaires in the Kth zone.

The objective function and its constraints of the proposed 
RBFN controller are presented in the equation.

The proposed RBFN model was developed using the MATLAB 
platform.

( ) k
kk 1

minf D d  
=

=∑  (12)

Where, Dmin< d<Dmax

E>Em

Where, f (d) is an objective function: the average dimming 
levels of all the luminaires, Dmin, and Dmax are luminaire’s 
dimming capability lower and upper bounds, respectively, 
E is average illuminance levels measured on working plane 
and Em is averagely maintained illuminance levels set point.

RESULTS AND DISCUSSION

The case study is an actual living room of my apartment. The 
room dimensions are 20 m (length), 8 m (width), and 2.7 m 
(ceiling height). The room is illuminated by 24 T8 recessed 
luminaires arranged in the grid of 8 by 3. Each luminaire 
consists of 2 × 38W T8 lamps. The total lighting power density 
(LPD) and average illuminance levels (E) are 11.4 W/m2 and 
514 lux, respectively.

The lighting system was retrofitted with the LED luminaires to 
benefit LED lamps’ advantages: Dimming control capabilities 
and energy-efficient. The luminaire specifications are as 
follows: the total luminous flux of 3500 lm, the total power of 
34 W, and recessed type. The retrofit lighting contributed 35.

LED luminaires (5 by 7 grid). As a result, the LPD and (E) were 
7.4 W/m2 and 625 lux, respectively. It showed that the retrofit 
with LED luminaires had contributed to reducing luminaires’ 
power in room space and reduced the lighting system’s EC.

Moreover, it also increased the illuminance levels that would 
also provide visual performance in the room. The luminaires’ 
layout in living room is illustrated in Figure 10; the black 
squares represent the luminaires, and the blue circles represent 
the light sensors. In this paper, six-light sensors were placed 
on the ceiling of the room, and the sensor field of view was 
considered half opening of 60°. The sensors’ arrangement and 
their indexing are shown in Figure 10.

The numbers of sensors determine the number of zones. As 
a result, the number of zones was 6. The details of luminaire 
indexing based on their zones are presented in Table 3.
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Table 3: The luminaire numbers based on their zone
Zone Luminaire
1 3–5, 8–10
2 13–15, 18–20, 23–25
3 28–30, 33–35
4 1,2,6,7
5 11,12,16,17,21,22
6 26,27,31,32

In this study, daylight simulation was carried out using DIALux 
under the clear sky condition, from 08:00 to 17:00 per 1 h 
of interval time on March 1, April, and May in 2020. The 
simulated data was recorded for the training process purpose. 
The data was divided into two parts, which were input data 
and target data. The inputs represent the average illuminance 
values [Figure 11] within the sensor field of view (EFOV) 
vector, while the outputs represent the dimming levels of the 
luminaires (d) vector.

Figure 12 shows the architecture of the proposed RBFN as a 
controller in the lighting system. It can be seen the number of 
neurons for input and output layers is 6. Meanwhile, the hidden 
layer consists of a radial basis and linear layers containing 30 
and 6 neurons.

To test and validate the proposed RBFN model, the light sensor 
output data were obtained from the DIALux simulation on April 
25, 2020, under clear sky condition. The light sensor output 
data are the input vector of the controller (RBFN model). The 
controller processes the sensor data and generates the dimming 
levels for luminaires. The dimming levels of luminaires’ results 
under the proposed RBFN controller for selected zones and 
their mean are presented in Figure 13. Based on Figure 13, the 
highest dimming levels of luminaires for the whole zones at 
time 8:00 due to at that time, the illuminance distribution from 
daylight across the room was the lowest compared to other 
times. The mean dimming levels of luminaires for the whole 
working hours was 0.35. The dimming levels of luminaires at 
Zone 4 showed the highest dimming value due to the zone was 
the lowest illuminance distribution contribution from daylight.

The DIALux software simulation was carried out to validate the 
illuminance levels fully satisfied with the EN12464-1 based on 
the dimming levels generated from the proposed controller.[33] 
Figure 14 shows the average illuminance levels under the 
proposed RBFN controller. The average illuminance levels 
under the proposed RBFN controller were archived above the 
threshold of E that was specified in the EN12464-1, which is 500 
lux. From the simulation results, the isoline from both daylight 
and artificial light at time 13:00 is depicted in Figure 15.

Figure 10: Top view of a living room

Figure 12: Architecture of proposed RBFN

Figure 11: Average daylight illuminance in my room

Figure 14: Average illuminance levels under the proposed RBFN 
controller

Figure 13: Dimming levels of luminaires results for selected zones 
and their mean
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According to the equation, the total EC of all luminaires 
under the proposed RBFN controller was calculated.[11] 
Figure 16 presents the energy used under the proposed 
RBFN controller during day hours by considering the 
electricity tariff for the low voltage commercial buildings 
(tariff B) from the electricity utility of Bangladesh, 
20,000MW.[34] The total electricity cost was BDT 5.614/day. 
Energy-saving (ES) can be described as the difference 
between existing and proposed systems’ EC and is divided 
by the existing system’s EC. ES is the most widely used to 
evaluate energy performance, and most studies have been 
expressed in percentage (%). As a result, the ES of the 
proposed RBFN controller was 34%.

CONCLUSION

This paper is offering a smart lighting control system using the 
RBFN model in a resident. The controller’s objective function 
is to minimize the dimming levels of luminaires that satisfy 
the minimum of E stated in the EN12464-1. The light sensor 
field of view was considered to calculate the dimming levels 
of luminaires for the proposed RBFN controller. The proposed 
controller was tested and validated at an actual office room and 
was simulated using DIALux software. The results showed that 
the proposed RBFN controller showed great performance in 
achieving dimming level targets and satisfied the EN12464-1. 
Furthermore, the energy savings recorded from the proposed 
RBFN controller was 34%.
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