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Estimation of correlation dimension from earthquake data 
using grassberger and procaccia algorithm
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ABSTRACT

Correlation dimension is a measure of the dimensionality of the space occupied by a set of points usually referred to as a type of fractal dimension, 
it is an important parameter for understanding the complexity of a system and a tool for investigating the non-linear and chaotic characteristics of 
a system. The correlation dimension can, therefore, be used to distinguish between true stochastic processes and deterministic chaos. This research 
work is aimed at investigating the dynamics characteristics behavior of Earthquakes’ occurrence by estimating the correlation dimension using the 
Grassberger and Procaccia algorithm. The data used for this study were obtained from Advanced National Seismic System, the data covers the major 
global seismic regions. The data were processed, the correlation integral and with their respective associated radius and the correlation, dimension 
was extracted using Grassberger and Procaccia algorithm with code written in Python 3. The results show that the values of the correlation dimension 
for the three regions considered are fractional and the correlation exponent tends to converge which is symptomatic of a deterministic chaos.
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INTRODUCTION

Correlation dimension is a measure of the dimensionality of 
the space occupied by a set of random points usually referred 
to as a type of fractal dimension.[1] It is obtained from the 
correlations between random points on an attractor. The 
correlation dimension (D2) for a set of points is defined as:

 D
p r

rr

i i
2

2

�
��

�
lim

log ( )

log

where p ri
2 ( )  is the probability of finding a pair of points in 

a box of size r.

If the coverage of the attractor is uniform, we have, Pi 1
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where M(r) is the number of cells needed to cover the attractor.

The correlation integral or correlation sum C(r) is given as
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where N is the number of points

H is the Heaviside step function; with H(u) = 1 for u > 0, and 
H(u) = 0 for u ≤ 0

where u = r–|Yi–Yj|, r is the radius of a sphere centred on Yi 
or Yj (attractor),

Yi stands for a point on which we center our measuring device 
(e.g. a box, a sphere or circle).

Yj are other point on the trajectory, for each centre point, the 
absolute distance between yi and yj is |yi-yj|.

Grassberger and Procaccia established that for small values 
of r and for sufficiently large numbers of data points N, the 
probability of having a pair of points in a box of size r is 
the same as the probability of having a pair of points with 
separation distance less than r.

For small r, the correlation sum grows according to a scaling 
relation;
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C(r) ≈ rv

where v is the Correlation Exponent, this scaling relation is 
only valid if r is small and N is large.

Rearranging the scaling relation and taking logarithms of 
both sides, shows that D2 may be approximated by log (C(r)) 
divided by log(r), which is usually approximated as the slope 
of the straight line scaling region in a plot of log(C(r)) against 
log(r).[2] Practically, the estimation of v is done by plotting 
the correlation integral C(r) values obtained for different 
lengths (r) against the corresponding length (r) on a log-log 
graph and the slope is deduced. Literarily, v is equal to D2 
but, the value of v can further be processed by estimating v 
for different embedding dimensions. This can be achieved by 
plotting the values of v against its corresponding embedding 
dimension, and v is expected to converge at a point. The 
values at which v converges is taken as the real correlation 
dimension. However, it is often useful to represent the attractor 
in a higher dimensional space than absolutely necessary, in 
order to reduce systematic errors. These errors result from a 
strongly non-uniform coverage of the attractor, provided this 
non-uniformity is not so strong as to make v not equal to D.[1]

Correlation dimension has been applied both theoretically 
and practically in various fields of science such as agriculture, 
medicine, atmospheric physics, economics, and mathematics. 
The popular Grassberger and Procassia algorithm for estimating 
correlation dimension was first applied.[1] It was used to 
distinguish between random noise and chaos, also to determine 
the order of Non-Linear Auto-regressive Model, and to test 
the residuals of linear models.[3] The correlation dimension 
was used in medicine to differentiate electroencephalographys 
arising from dementia due to Alzheimer’s disease from that 
of vascular etiology[4] to differentiate healthy brain states 
from those with schizophrenia or brain tumors.[5,6] Correlation 
dimension to differentiate between abnormal and normal 
achromatic Visual evoked potentials,[7] to distinguish between 
normal retinas and pathological retinas of diabetic patient using 
the box-counting method.[8] Diabetic retinopathy is damage to 
the blood vessels of the retina in people with diabetes which 
is a leading cause of blindness in people with diabetes. It is 
an important parameter for understanding the complexity of a 
system and can be used to distinguish between true stochastic 
processes and deterministic chaos whether low-dimensional 
or high-dimensional.[1,9]

MATERIALS AND METHODS

The data used for this study was obtained from Advanced 
National Seismic System (ANSS). The Earthquake data 
between 1962 and 2012 was obtained for three different seismic 
active regions with a delta search parameter. The three regions 
are North America, South America and Asia. Large earthquake 

of at least magnitude 8.5 was made the reference point for 
each of the regions. The delta search parameters enabled 
us to obtain the data radially outward from our reference 
large earthquake, the radii were chosen such that the data is 
confined to the respective regions and the rupture areas of the 
respective referenced large Earthquake. The major elements 
identified before estimating the correlation dimension are, 
Phase space or state space, Attractor, Trajectory, Correlation 
integral, and Embedding dimension. Phase space is the graph 
or in more formal terms, phase space or state space is an 
abstract mathematical space in which coordinates represent the 
variables needed to specify the phase (or state) of a dynamical 
system. The solid earth represents our phase space where we 
have the epicentre or geolocations of the earthquake, this is 
achieved by plotting a graph of the latitude against longitude of 
each epicentre of each earthquake. The attractor is a dynamical 
system’s set of stable conditions, the attractor in this case is 
the epicentre of the earthquakes located on our state space. 
The finite volume of phase space that the attractor occupies 
usually is quite small relative to the volume of the phase space 
itself, which justifies our representation when the volume of 
spaces occupied by the epicentres is compared with the entire 
surface area of the solid earth. The trajectory represents the 
path in which the attractor follows. Both the attractor and the 
trajectory can be visualized using software such as PHASER, 
XPPAUT, and WOLFRAM MATHEMATICA.

Estimation of the Correlation Integral
The correlation sum as given by[1] is
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Equation 2 can also be written as
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The xi in Equation 1 stands for a point on which we cantered 
our measuring device; our xi is the reference large earthquake 
of radius r. The first radius chosen is the distance between our 
large reference earthquake and the next earthquake that occurs 
both in space and time. xj are other points on the trajectory. For 
each centre point, the absolute distance between xi and xj is 
|xi-xj|. the separation distance between every pair of points was 
calculated using the equation of separation distance between 
two vectors as used in the work of[10] where they represented 
a two-dimensional system with variables x and y separation 
distance by equation 4.
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For a two dimensional system with variables x and y, the 
separation is defined by equation 4

Where a and b denote the two orbits. If a and b denote 
two orbits, dj is defined as the separation between the jth 
pair of nearest neighbours. Since earthquake is a single 

observable, for the purpose of this research, x is defined as 
the latitude while y is defined as the longitude of epicenter 
of the earthquake. Xa and Ya are defined as the latitude and 
longitude of a referenced earthquake, respectively, while 
Xb and Yb are the latitude and longitude of the subsequent 

Figure 1: Graph of the correlation sum C(r) against the radius (r) for different embedding dimensions (Dm)

Figure 2: Correlation dimension curve for region 1

Figure 3: Correlation dimension curve for region 2
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earthquakes, respectively. If the result obtained from r-|xi-xj| 
is negative, then the measured distance |xi-xj| is greater than 
ε. That means point Xj is beyond the circle of radius ε and 
therefore doesn’t qualify for our count. On the other hand, 
if ε-|xi-xj| is positive, then |xi-xj| is smaller than ε, and the 
point Xj is within the circle. H the Heaviside function is an 
efficient way to label each qualifying point, that is, each 
point for which r-|xi-xj| is positive (>0). For all those cases 
the computer program was asked to assigns a value of 1 to 
the entire expression G(r-|xi-xj|). If, r-|xi-xj| is negative, it 
implies the point xj is beyond the radius of the circle. For 
those cases, the computer program was asked to assigns a 
value of 0 to G(r-|xi-xj|). The Heaviside function made it 
easy to earmark the points that qualify for the count. The next 
step is the counting of the pair of points inside the circle. It 
involves adding all the numbers pairs of points for the centre 
point xj and the subsequent centre points xi when each point 
is chosen inside the circle. this operation is done by the two 
summation signs in Equation 1. The two summation signs 
together simply mean that we go to the first center point xi. 
and sum the results of G(r-|xi-xj|) for all points (all Xj’s), 
then do the same for the next centre point xi, and so on all the 
way through the total of N points. That gives the total counts 
of all the points that fall within the circle of the specified.

Normalization is achieved by dividing the total number of 
pairs of points by the total number of available points. The 
total number of available points is N(N-1). Hence, we multiply 
the total number counted (the numerator) by 1/[N(N-1)] but 
1/N2 was used since N is very large, the 1 in N-1 becomes 
negligible. Then, N-1 simply becomes N. The notation “N(N-
1)” (the denominator in the formula of correlation integral) 
therefore becomes N(N) or N2. Multiplying the entire counts 
by 1/N2, with N2 being the total number of available points 
or pairs on the trajectory hence normalises the equation. 
Having determined the correlation sum for our first radius of 
0.1 km, the first radius was chosen to be the smallest distance 
between our large earthquake and the closest earthquake in 
time and space. The radius was increased by 1 km and the 
entire process of estimating the correlation integral was 

repeated for the new radius. Obviously the larger the radius 
the larger the number of points in the circle, that is, the new 
radius yields a larger total number of points to be counted, 
which gave a different result for the respective radius. The 
normalization constant N2 depends only on the size of the 
basic dataset and so is constant regardless of the radius 
ε. Hence, the larger ε yields a larger correlation sum. We 
determined the correlation sum/integral with their respective 
associated radius, the result was put in a tabular form and a 
graph of the correlation integral versus the radius was plotted 
on a log-log scale and the value for the correlation exponent 
was deduced from the slope of the scaling region. The above 
method explained was achieved with the help of a written 
program on Python 3 programming language. Since placing 
a grid of boxes or spheres on the attractor is not feasible, we 
improvised by calculating the distances between every point 
(epicentres) on the attractor with reference to one another. 
The embedding dimension is the number of lagged values 
(xt, xt+m, etc.) Where t is 1,2,3.used in a pseudo phase space 
plot, usually for the purpose of reconstructing an attractor. 
The earthquake does not occur at regular time interval but 
with the aid of the search parameter with reference to the large 
earthquake the subsequent earthquakes follow in space and 
time. The time was lagged by 2 in order not to overstretch the 
trajectory until the embedding dimension of 5 was achieved. 
The process of the correlation sum was repeated for different 
embedding dimension. The computations produce a batch 
of radii (r) and their associated correlation sums C(r) for 
each of several embedding dimensions. The correlation sum 
obtained for each radius was then plotted against the radius 
respectively [Figure 1]; the slope of each graph is taken to be 
the correlation exponent. The correlation dimension obtained 
from each embedding dimension was then plotted against the 
dimension [Figures 2-4] which was used to characterise the 
dynamics of the occurrence of earthquake whether is chaotic 
or stochastic.

RESULTS AND DISCUSSION

In this study, the Grassberger and Procassia Algorithm 
technique of estimating Correlation dimension was employed 
to study the dynamical behaviour of the earthquake occurrence 
in three different regions across the world. The data analysed 
was limited to area of 0–200 km within the region and also from 
lower magnitude of 1 to the referenced large earthquake. This 
enabled us to study the occurrence of the earthquake as a single 
system which starts to build up stress until it finally releases the 
energy. We can determine whether or not the system is chaotic 
by the features and value of the correlation dimension, if the 
correlation exponent increases as the separation distance r is 
increased, it indicates absolute randomness. However if the 
correlation exponent tends to converge in a phase space this 
corresponds to chaos. It also indicates the amount of chaos 
in a system. Figures 2-4 show the results of the correlation 

Figure 4: Correlation dimension curve for region 3
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dimension obtained for regions 1, 2 and 3 respectively. The 
values are fractions and each converges at a point for the three 
regions.

CONCLUSION

The correlation dimension for the three regions is fractions 
with 0.64 for region two being the lowest, followed by 0.77 
for region three and 0.97 for region one The values of the 
correlation dimension indicate the quantity of chaos present 
in each region. The results show that as the separation distance 
increases, the correlation exponent increases but at a large 
separation distance r the correlation exponent converge at 
a value this is a symptom of a deterministic chaotic system.
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