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ABSTRACT

A critical step when developing multivariate risk prediction models is to decide which are the predictors that should be included and which ones 
could be neglected to get an accurate but interpretable model. The general additive models (GAMs) have come as quite an attractive procedure 
to handle covariate complexities in their various functional forms which is unlikely with the Cox model. In this study, a modification of piece-
wise additive hazard model is proposed. Three levels of variance of Weibull distribution were assumed for baseline hazards in generating the 
data. The sensitivity of the baselines was accessed under four censoring percentages (0%, 25%, 50%, and 75%) and three sample sizes (n=100, 
500, and 1000), for when models were single additive model (SAM) and when partitioned – piece wise additive model (PAM). A piece-wise 
Bayesian hazard model with structured additive predictors in which time-varying covariate and the functional form of continuous covariates 
were incorporated in a non-proportional hazards framework was developed. Hazard function was modeled through additive predictors that are 
capable of incorporating complex situations in a more flexible framework. Analysis was done utilizing MCMC simulation technique. Results 
revealed that the PAMs in most situations outperformed the SAMs with smaller DIC values and larger predictive powers with the log pseudo-
marginal likelihood criterion.
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INTRODUCTION

In a ground breaking paper, Cox proposed a model for survival 
data in the proportional hazard frame work. Sir David Cox 
observed that if the proportional hazard assumption holds 
(or, is assumed to hold), then it is possible to estimate the 
effect of parameter(s) without any consideration of the hazard 
function.[1] Developing models in complex analysis may violate 
this assumption as the model may incorporate time-varying 
effects and covariates, thereby relaxing the proportional hazard 
assumption, and allowing the hazard ratio to depend on time t. 
A common approach to model time-varying effects is by piece-
wise constant functions, as these are flexible enough to capture 
any shape of the baseline hazard or covariate effects,[2] for a 
frequentist and[3] and more recently[4] for a Bayesian approach.

T h e  h a z a r d  m o d e l  w a s  f u r t h e r  e x t e n d e d  b y 
Hennerfeind et al., Kneib and Fahrmeir,[5,6] to incorporate a 

flexible spatial generalization of the Cox model, a structured 
geo-additive predictor, including a spatial component for 
geographical effects and non-parametric terms for modeling 
unknown functional forms of the log-baseline hazard rate and 
non-linear effects of continuous covariates.

Generalized additive models (GAMs) are statistical models in 
which the conventional multiple linear regression is generalized 
to permit a much broader class of time-varying and non-linear 
functional form of continuous covariates and their effects, 
but still with additive relationships between response and 
predictor variables. GAMs, derived from the work of Hastie 
and Tibshirani,[7,8] provide flexible and effective means of 
moving out of the “linear rut”[9] in which a considerable amount 
of bio-statistical modeling is still located. Conventionally, 
non-linearity is handled through transformations and then 
estimation of linear models. Such an approach requires the 
researcher to have good knowledge of the correct functional 
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form before the model is fitted when, in reality, the choice is 
very open and theory is usually vague. In contrast, the GAM 
represents an “adaptive” approach in which the data help guide 
the choice of appropriate functional form.[10]

In approaching these complexities in building a model, data 
are partitioned in bits of intervals and regularized estimation 
through penalized spline is carried out. The complexity of 
covariates included in models and the estimation method 
adopted by different authors such as Marano et al., Lang and 
Brezger[4,11] has, however, caught our attention in this study.

Motivated by this, we studied and compared the sensitivity 
of models under different censoring percentages, for several 
sample sizes within the framework of Weibull distributions 
whose shape and scale parameters are obtained by varying the 
variances while keeping the mean at 1; through the unit root 
function implemented in R.

The study further investigates: The performance of single 
additive models (SAMs) and the modified piece-wise additive 
extension or piece-wise additive models (PAMs) under various 
censoring percentages and sample sizes employing three levels 
Weibull baseline variance.

METHODOLOGY

The risk data used for this paper were simulated from a 
Weibull baseline hazard distribution which was used to 
generate survival times for sample sizes of 100, 500, and 1000, 
respectively. Various censoring levels or percentages of no 
censoring “0%,” low “about 25%,” moderate “about 50%,” 
and high “about 75%” were used.

Model Specification
The Cox hazard model
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The baseline hazard rate is unspecified and assumes that 
covariates x=(x1,…,xp) act multiplicatively on the hazard rate 
through the exponential link function.[1]

Model Extension
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Where, λi (t) is the hazard function for individual i at time t.

γ1 xi1…γp xip: Are time invariant covariates.
γj xin (t): Time-dependent covariates
λ0 (t) is the baseline hazard function for an individual whose 
covariates x1…xp all have values of 0.

An additive representation of model (1) is given by:
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This is a reparameterization of the Cox model

Where, f0 (t)=logλ0 (t) is the functional form of the baseline 
hazard, which implies exp(f0 (t)). Other aspects of the model 
include the functions f1 (t) z1…fp (t) zp which are the functional 
form of time-varying covariates z1,…,zp, the functions fj (w1)…
fq (wq) are possibly non-linear effects of metrical covariates 
w1,…,wq and γ is the usual linear part of the predictor for some 
categorical covariates.[5,12]

Modification of Piece-wise Additive Models (PAMs)
The proposed model in bits of intervals is given as
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with its various terms defined as:

The function fh=logλh is the baseline effect for the hth interval 
of PAM

The functions f1 (t) z11…fp (t) zph are the functional form of 
time-varying covariates z11,…,zph in the hth interval, the 
functions fj (w11),…, fp (wqh) are possibly nonlinear effects of 
metrical covariates w1h,…,wqh in the hth interval, and fspat (sih) 
is a structured spatial effect, where s, s = 1, ∴ , S is either 
a spatial index, with s = si if subject i in the hth bit (interval) 
is from area s or it is an exact spatial coordinate s =(xi, ys), 
for example, for centroids of regions or if exact locations of 
individuals are known.

γ is the usual linear part of the predictor.
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Where, for each subject i there is a product of Hi terms, Hi being 
the number of intervals in which the subject is followed. In the 
expression above, dih is the status of the ith subject within the 
interval Th (0 = alive or censored, 1 = failed); Δih is the time 
spent in Th by the subject. From expression (5), it may be seen 
that LPAM is proportional to the product of Poisson likelihoods 
for Dih with mean parameters: ( )exp  T

ih h i ih ihX sµ λ β= + ∆ . As a 
consequence, the expression of the Poisson regression model is:
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Where, h(i) indicate the interval where ti falls, that is, the 
interval where individual i died or was censored,

αh = log(λh) are log-hazard parameters, and the term log(Δih) 
is an offset.

Bayesian P-splines Approach for Modeling the 
Unknown Functions
A number of competing approaches are available for modeling 
and estimating non-linear function fj of continuous covariates. 
These include smoothing splines,[8] local polynomials,[13] 
regression splines with adaptive knot selection,[14,15] and 
P-splines.[16,17] In this study, Bayesian version of penalized 
splines is employed following.[11] P-splines were introduced in 
a frequentist setting by Eilers and Marx, Marx and Eilers.[16,17] 
The basic idea of P-splines is to assume that an unknown smooth 
function fj (xj) of a continuous covariate xj can be approximated 
by a linear combination of B-spline basis functions Bm.[18] That 
is, denoting the m-th basis function by Bjm, we then obtain

  f x B x
j
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The basic functions Bm are B-splines of degree l defined over a 
grid of equally spaced knots xjmin=ξ0<ξ1<…<ξs =xjmax, dj = l+s, 
where s is the number of the equally spaced knots.

The Bayesian P-splines method is based on a hierarchical 
model with non-informative priors for the regression 
coefficients (β) and a Gaussian random walk (RW) prior of 
order d for the coefficients of the hazard function (B-spline), 
conditional to a smoothing parameter τ2 the general expression 
of the RW prior as suggested by Lang and Brezger, Kooperberg 
and Intrator[11,19] is the following:
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The penalty matrix Kj is of the form Kj = D′D, where D is a 
first or second order difference matrix.

For an independent and identical random effect, the penalty 
matrix is the identity matrix, that is, Kj=I. The variance 
parameter τ j

2  controls the tradeoff between flexibility and 
smoothing and an inverse gamma prior (the conjugate prior) 
is assumed, that is,τ j IG a b2

~ ( , ) .

Gaussian Random Field (GRF) Priors
For georeferenced data, it is commonly assumed that vi = 
v(si) arises from a Gaussian random field (GRF) {v(s),sϵS} 

such that v = (v1,…,vm) follows a multivariate Gaussian 
distribution as v~ Nm (0,τ2 R), where τ2 measures the amount of 
spatial variation across locations and the (i, j) element of R is 
modeled as R[i, j] = ρ(si, sj). Here ρ(.,.) is a correlation function 
controlling the spatial dependence of v(s). In “survregbayes” 
package in R, the powered exponential correlation function 
ρ(si,sj). = ρ(si, sj, φ).= exp{–(φ‖s–s’‖)v} is used, where φ > 0 is 
a range parameter controlling the spatial decay over distance, 
vϵ (0,2] is a pre-specified shape parameter, and ‖s–s’‖ refers to 
the distance (e.g., Euclidean, great-circle) between s and s’. 
Therefore, the prior GRF (τ2,∅) is defined as
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i = 1,…, m where Pij is the (I, j) element of R–1[20]

Hazard Model with Regularized Functions
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Where, B0 is the vector form of a B-spline of degree 0 defined 
for the follow-up period, and πβ and πτ2 are generic prior 
densities for the regression coefficients and the smoothing 
parameter.[20,21]

Regularized piece-wise additive model (RPAM)
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The time-dependent effects for each covariate are: Z Bj i
T

j1 0 1, γ ; 
j = 1,…,p. Thus, for each Zj, its values are multiplied by a piece-
wise constant function: BT j0 1γ ; in the parameters. 
� � �1 1 1 1j j j H

T� �( , , ), , , , . This enables the effect of each Z1j to 
vary in each interval Th of the original partition of the follow-up:
B Z B zT

j i
T

h j i j h0 1 0 1 1� � �� � �, , ,  for t∈Th. On the other hand, 
the effects of w1,…,wq have been represented through the 
general expression of B-splines, with the vector , ( )  T

j iB w  
including the spline basis of wi calculated for the ith individual. 
Thus, in this case, the degree and the knots of each spline are 
fixed following conventional rules. πβ and πτ

2 are generic prior 
densities for the regression coefficients and the smoothing 
parameter.

Model Specification to Advance Simulation
Model 1: 
�SAM j i spat iht z w s f t f t z f w f s; , , ( )� � � � � � � � � � � �0
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Where, λPI is the hazard function when partitioning is ignored 
(PI) or SAM

Where, λPD is the hazard function when partitioning is done 
(PD) or piece wise additive model (PAM).

Test for Non-proportionality
To test the hypothesis that the proportional hazard assumption 
is valid, the following statement of hypothesis is made.

H0: δ1=δ2=⋯=δp (Assumption is valid)
H1: At least one of the δi’ s is not equal to zero (Assumption 

violated)

Decision rule: Reject H0 if P ≤ α (level of significance)

Residual measures are used to investigate the departure from 
the proportional hazard assumption. Schoenfeld residuals are 
used to test the assumption of proportionality. Schoenfeld 
residuals are usually calculated at every failure of time under 
the proportional hazard assumption and usually not defined 
for censored observations. The overall significance test is 
called the global test of the model, sighted in Adeniyi and 
Akinrefon.[22]

Data Analysis
The data are simulated using the functional form of time-
varying covariate by Bender et al.[23] given as

( ) 0.5 * ~ ( ,1 , 0.5)f t t y y binom N=

The functional form of the continuous covariates as in 
Brezger[24] is given as:

f w wi i1 1 0 1 75� � � . / .

where xi~U(–3,3).

For spatial frailty, we propose, S = pnorm(v) and 
v~mvrnorm(1,Σ); if S=pnorm(v) then S~mvrnorm, where, Σ 
is the covariance matrix for spatial correlation.

Coordinates for spatial correlations follow the uniform 
distribution. s1 = runif(N,0,40) and s2 = runif(N,0,100),[25] 
obtained the shape and scale parameters of the Weibull 
distribution from the following
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for a convenience choice of mean 1 and variance 0.5. Using 
the uniroot function in R. Parameters were given to be 
approximately α=1.435523 and η=1.101321. We considered 
studying the impact of increasing and decreasing the variance 
of the Weibull distribution while keeping the mean at 1. The 
result is displayed in Table 1.

Data simulation and analysis were carried out in R using the 
coda package for spBayesSurv, version 3.6.2. Comparisons 
were done using deviance information criterion (DIC) (smaller 
is better) which places emphasis on the relative quality of 
model fitting and log pseudo-marginal likelihood (LPML) 
(larger is better) focuses on the predictive performance. Both 
criteria are readily computed from the MCMC output.

RESULTS
Table 1: Shape and scale parameters of the Weibull 
distributions
E(T) Var(T) α η
1 0.25 2.101377 1.129063
1 0.5 1.435523 1.101321
1 0.75 1.157975 1.052847
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Table 2: DIC values for levels of censoring, three levels of Weibull baseline variance and sample sizes for partitioned 
and no partition models
Censoring % Variance n=100 n=500 n=1000

No partition PAM No partition PAM No partition PAM
0 0.25 853.6004 832.1385 4068.979 3999.343 8779.792 8597.94

0.5 962.164 943.7934 4707.551 4686.069 10,137.67 10,085.62
0.75 1032.945 1005.326 5138.187 5076.758 11,028.65 10,970.23

25 0.25 653.4635 644.8024 3210.955 3181.119 7007.161 6939.78
0.5 716.3681 702.3201 3623.79 3613.921 7820.168 7813.243
0.75 756.2604 746.4749 3848.511 3829.991 8272.722 8263.318

50 0.25 512.0976 488.0027 2407.989 2356.165 5000.534 4942.05
0.5 520.4511 515.8235 2620.238 2604.272 5512.023 5514.923
0.75 543.8143 540.5304 2607.02 2552.504 5698.33 5707.325

75 0.25 255.7324 287.7841 1280.065 1275.756 2695.128 2677.361
0.5 312.231 299.871 1338.623 1350.044 2850.098 2848.829
0.75 269.8102 267.6131 1350.597 1353.066 2831.845 2841.659

Table 3: LPML values for levels of censoring, three levels of Weibull baseline variance, and sample sizes for 
partitioned and no partition models
Censoring % Variance n=100 n=500 n=1000

No partition PAM No partition PAM No partition PAM
0 0.25 ‒430.1177 ‒426.613 ‒2036.033 ‒2000.033 ‒4392.223 ‒4280.412

0.5 ‒483.6684 ‒475.1374 ‒2355.252 ‒2344.109 ‒5071.276 ‒5044.9
0.75 ‒519.1246 ‒506.7498 ‒2570.389 ‒2539.7 ‒5516.488 ‒5485.61

25 0.25 ‒329.0801 ‒314.399 ‒1606.389 ‒1593.613 ‒3504.767 ‒3474.337
0.5 ‒360.4299 ‒352.6802 ‒1812.87 ‒1809.941 ‒1416.636 ‒1426.327
0.75 ‒380.336 ‒376.0484 ‒1925.237 ‒1918.535 ‒4137.215 ‒4132.988

50 0.25 ‒289.8239 ‒246.5223 ‒1204.68 ‒1178.775 ‒2500.928 ‒2473.196
0.5 ‒262.7259 ‒261.5076 ‒1310.931 ‒1304.996 ‒3910.985 ‒3908.749
0.75 ‒274.6984 ‒274.7674 ‒1304.353 ‒1277.373 ‒2849.581 ‒2854.882

75 0.25 ‒128.6635 ‒148.3942 ‒641.0598 ‒638.736 ‒1348.426 ‒1341.252
0.5 ‒159.6845 ‒157.4531 ‒670.0822 ‒678.3336 ‒2757.031 ‒2758.394
0.75 ‒135.9174 ‒134.4134 ‒676.0527 ‒681.0287 ‒1416.071 ‒1423.263

Interpretation
From Tables 2 and 3: The PAMs perform better than the SAMs 
– by Hennerfeind et al., and Abiodun.[5,12] This suggests that 
smoothening with smaller bit of intervals is better than when 
partitioning is ignored. It was observed that P-spline smoothing 
for continuous covariates in smaller sample sizes is better 
than in larger sizes. Increments in variance parameter for the 
baseline distribution reduce the precision and predictive power 
of the models (high values of DIC and low values of LPML). 
This was particularly observed in PAMs for intermediate and 
high levels of Weibull baseline variance at 75% censoring 
when sample size is n = 500 and 1000, and for intermediate 
levels of variance at 50% and 75% censoring, when n = 1000.

Precision and predictive power (based on DIC and LPML) 
improved with increase in censoring percentages. PAM 
outperformed the SAMs for reduced amount of the spread 
of event times and censoring percentages. Increase in 
sample size induces increase in DIC and a decrease in LPML 
values.

In general when dealing with survival analysis data in a 
non-proportional framework, with complexities associated 
with covariate combinations, smaller sample sizes produce a 
better model representation for SAMs and much better when 
the models are represented within bits of intervals in constant 
hazards – PAMs. Increase in the variability in the baseline 
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distribution seems to increase the spread of survival times 
which further reduces model precision.

CONCLUSION

This research brings to knowledge the essence of performing 
survival data analysis in bits of time, especially in scenarios 
with covariate complexities, which makes interpretation of 
hazard rates difficult. PAM has been shown in this study 
to be better than SAM at all levels of variance, censoring 
percentages, and sample sizes.

REFERENCES

1. Abiodun AA. Analyzing competing risk survival time data 
using cox and parametric proportional hazards models. JNSA 
2007;19:74-9.

2. Verweij PJ, van Houwelingen HC. Time-dependent effects of 
fixed covariates in cox regression. Royal Stat Soc Series B 
1995;34:187-220.

3. Gamerman D. Bayes estimation of the piece-wise exponential 
distribution. IEEE Trans Reliab1994;43:128-31.

4. Marano G, Boracchi P, Biganzoli EM. Estimation of the 
piecewise exponential model by Bayesian P-splines via Gibbs 
sampling: Robustness and reliability of posterior estimates. Open 
J Stat 2016;6:451-68.

5. Hennerfeind A, Brezger A, Fahrmeir L. Geoadditive survival 
models. J Am Stat Assoc 2006;101:1065-75.

6. Kneib T, Fahrmeir L. A mixed model approach for geo additive 
hazard regression. Scand J Stat 2007;34:207-28.

7. Hastie T, Tibshirani R. Genemlized additive models. Stat Sdolce 
1986;1:297-318

8. Hastie T, Tibshirani R. Generalized Additive Models. London: 
Chapman and Hall; 1990.

9. Jones K, Almond S. Moving out of the linear rut the possibilities of 
generalized additive models. Trans Inst Br Geogr 1992;17:434-47.

10. Marra G, Wood SN. Practical variable selection for generalized 
additive models. Comput Stat Data Anal 2011;55:2372-87.

11. Lang S, Brezger A. Bayesian P-splines. J Comput Graphical Stat 
2004;13:183-212.

12. Abiodun AA. A Bayesian approach to exploring unobserved 
heterogeneity in clustered survival and competing risk data. 
JNSA 2009;20:1-13.

13. Fan J, Gijbels I. Local Polynomial Modelling and its Applications. 
London: Chapman and Hall; 1996.

14. Friedman J, Silverman B. Flexible parsimonious smoothing and 
additive modelling (with discussion). Technometrics 1989;31:3-39.

15. Stone C, Hamsen M, Kooperberg C, Truong Y. Polynomial 
splines and their tensor products in extended linear modelling. 
Ann Stat 1997;25:1371-470.

16. Eilers PH, Marx BD. Flexible smoothing using B-splines and 
penalized likelihood (with comments and rejoinder). Stat Sci 
1996;11:89-121.

17. Marx DB, Eilers HC. Direct generalized additive modelling with 
penalized likelihood. Comput Stat Data Anal 1998;26:93-209.

18. De Boor C. A Practical Guide to Splines. New York: Springer-
Verlag; 1978.

19. Kooperberg C, Intrator N. Trees and splines in survival analysis. 
Stat Methods Med Res 1995;4:237-61.

20. Zhou H, Hanson T. A unified framework for fitting bayesian 
semiparametric models to arbitrarily censored survival 
data, including spatially-referenced data. J Am Stat Assoc 
2017;113:571-81.

21. Omaku PE, Ibinayin JS, Tanko N, Braimah JO. A modified 
additive hazard model for some risk factors associated with 
hypertensive condition. AJMS 2020;3:1-8.

22. Adeniyi OI, Akinrefon AA. First birth interval: Cox regression 
model with time varying covariates. CJPL 2018;6:1-7.

23. Bender R, Augustin T, Blettner M. Generating survival 
times to simulate cox proportional hazards models. Stat Med 
2005;24:1713-23.

24. Brezger A. Bayesian P-splines in Structured Additive Regression 
Models. PhD Thesis. Munich: Springer-Verlag, LMU; 2004.

25. Ulviya A. Frailty Models for Modelling Heterogeneity. Canada: 
McMasters University; 2013.

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0 
International License. 


