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ABSTRACT

This research work presents a developed new sampling plan that utilizes information from the past and current lots for lot disposition assuming 
the life time of a product follows a Lomax distribution. An isolated truncated chain deferred sampling plan for Lomax product life distribution 
is proposed when the testing is truncated at a specified time. The optimal sample sizes obtained under a given maximum allowable percent 
defective, test termination ratios, and acceptance numbers. The operating characteristics formula of the proposed plan was developed. The 
operating characteristics and mean ratio were used to assess the performance of the plan. The study revealed that Lomax distribution has an 
increasing failure rate; also, as mean life ratio increases, the failure rate reduces and the minimum sample size increases as the acceptance number, 
maximum allowable percent defective, and experiment time ratio increase. The study concludes that the modified required minimum sample 
sizes were smaller making it a more economical plan to be adopted when time and cost of production is expensive and the testing is destructive.
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INTRODUCTION

Acceptance sampling inspection is a vital field in statistical 
quality assurance used to reject or accept products submitted 
for inspection. This field was popularized by Amal and 
Amani.[1] Acceptance sampling inspection is the process of 
examining samples or fraction of lot to verify whether it 
meets certain minimum quality specification so that the lot 
can be rejected or accepted if otherwise. Dodge and Roming 
summarized the procedure of inspecting sampling plan as 
follows: “A sample is randomly selected from the lot and the 
probability of the products being rejected or accepted depends 
on the information gotten from this sample.” This process is 
referred to as acceptance sampling. Therefore, acceptance 
sampling inspection is all about assessment and decision-
making regarding products in quality assurance. Acceptance 
inspection sampling is one of the key components in the field 
of quality control and is mainly used for incoming inspection.

In acceptance sampling plans, such as those developed by 
Balakrishnan et al., in 2007.[2] In Aslam et al.[1] and Srinivasa,[3] 

a lot under inspection is accepted if the number of failures is 
less or equal to the acceptance number. There are, however, 
different distributions that model these life products. To 
minimize both the producer and consumer’s risks, the selection 
of sample size (n) and other parameters ( , , , , )*c t t P

o om
m
m

is 

done in a systematic way, through “trial and error” method 
adopted by different authors such as Balakrishnan et al.,[2] 
Aslam and Shabaz,[4] Aslam et al.,[5] and Srinivasa.[6] These 
authors did not consider the two types of risks in their 
developed plans but considered either the producer’s or 
consumer’s risk. More so, the failure rate of these life 
distributions has not been put into consideration to know the 
different failure patterns of products that assume these 
distributions and how to reduce the failure rate. These are the 
motivations behind this study.

Statistical quality control is important to all human endeavors. 
It makes use of available data to elicit the required best decision 
for utmost profit. The theory and methods of statistical process 
control have been developed from industrial statistics roots, 
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such as quality specifications. In modern times, while quality 
enhancement still remains a major field of applications such 
as in health-care monitoring,[7] detecting of genetic mutation,[8] 
and credit and financial fraud detecting to mention but a few.[9] 
However, in acceptance sampling lot, this becomes an issue 
for optimal determination in management process. Existing 
literature on the acceptance number, acceptance maximum 
allowable percent defectives, and test ratio are conventionally 
set, such as in Amal and Amani,[1] Aslam and Shabaz,[4] and 
Steiner et al.[7]

Considering the works of Lio  et al .  in 2010[10] on 
acceptance sampling plans from truncated life tests based 
on the Birnbaum-Saunders distribution for percentiles, 
Ramaswamy and Priyah in 2012 on Hybrid Group 
Acceptance Sampling Plans for Lifetimes Based on 
Exponential Weibull Distribution.[11] Muhammad et al. in 
2010 work on group acceptance sampling plan for lifetime 
data using generalized Pareto distribution.[12] 

An isolated truncated chain deferred sampling plan for 
Lomax product life distribution is will be used when the 
testing is truncated at a specified time following Lemonte 
and Cordeiro work in 2013[13] and in the works of Oguntunde 
et al. in 2017.[14] The optimal sample sizes obtained under a 
given maximum allowable percent defective, test termination 
ratios, and acceptance numbers. The operating characteristics 
formula of the proposed plan was developed. The operating 
characteristics and mean ratio following Lomonte and Cordeiro 
idea will be used to assess the performance of the plan. The 
study revealed that Lomax distribution has an increasing 
failure rate; also, as mean life ratio increases, the failure 
rate reduces, and the minimum sample size increases as the 
acceptance number, maximum allowable percent defective, 
and experiment time ratio increase.

There is failure rate according to Lemonte and Cordeiro,[13] 
Aslam et al.,[15] Aslam et al.,[5] and Ramaswamy and Priyah.[11] 
This work has given an insight about the failure rate pattern 
and effect of mean life on the product that assumes Lomax 
distribution, thereby affecting the producers and the users of 
this distribution on information that will enhance decision-
making when using these distributions. 

METHODOLOGY

The Lomax Distribution
Lomax distribution was first proposed as a second kind of 
the Pareto distribution by Lomax in 1954.[1] The distribution 
provides a good model in biomedical problems. It is considered 
a significant model of lifetime models. It has also been used 
in relation with studies of income and reliability engineering 
modeling. It is being extensively used for stochastic modeling 
of decreasing failure rate life components. It has also serve as 

a handy model in the study of queuing theory and biological 
analysis.

The probability density function (p.d.f) and cumulative 
distribution function (cdf) of a product that has the Lomax 
distribution are given by:
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Where, α >0 and μ >0 are the shape and scale parameters, 
respectively.

Failure Rate Function of Lomax Products’ 
Distribution
Although the pdf describes the time till an item will fail 
completely, it does not directly specify either the probability of 
the item continuing to work for a given period of time or how 
the probability of failure depends on the quality of the part. 
Therefore, reliability is defined mathematically as:

	 R t Pr T t f x dx
t

( ) = >( ) = ( )
¥

ò� � 	�  (3)

= 1-F(t)=Probability of an item meeting specification for at 
least till age (time t), where, F(t) is the cdf.

Therefore, a useful function used in life time analysis is the 
failure rate. It is defined as:
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Equation (4) is the rate of failure given a testing till age t, where 
f(t) is the pdf and F(t) is the cdf, respectively.

Minimum Sample Size (n)
Suppose the probability of accepting a poor quality lot is fixed 
and the lot size is large enough, the binomial distribution can 
be used by Ramaswamy and Priyah.[11] Thus, the acceptance 
and non-acceptance criteria for the lot are equivalent to the 
decisions of accepting or rejecting the hypothesis. Suppose 
we want to find the minimum sample size such that:
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If p=F(t,μ) which is an increasing function of, it is always 
sufficient to specify this ratio.
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Aslam et al.[5] assumed that if the lot is very large and is not 
very small; therefore, Equation (4) can be rewritten as:
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Where, Gk (α, μ) denotes the cdf of a gamma distribution with 
the scale and shape parameters as a and , respectively. Gupta 
(1962) gave the minimum sample size formula as:
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Where, q = specified probability of failure, g
( , )*c p+1  is the 

percentage point at a standardized gamma variable with shape 
parameter.

This approximation was later discussed in Muhammad et al.[12] 
Using the relationship between gamma and Chi-square random 
variable, Equation (8) becomes
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Where = Assumed failure probability, is then introduced in 
place of P* to take care of the consumers risk and assumed 
failure probability (P) with the failure probability of assumed 
product life distribution F(t;μ) or consumer’s risk, that is, the 
cumulative life distribution function.

Assuming the Chi-square (χ2) random variables, Equation (9) 
is modified as:

	 n
F t
v=

é

ë
ê
ê

ù

û
ú
ú
+

c

m
b

2

2
1

,

( ; )
� (10)

Where takes care of the consumers risk, F(t; μ)= is the failure 
probability and can also be taken as the producer’s risk χ2

v,β 
denotes the β consumer’s risk of a variable with v=2(c+1) 
degree of freedom. Since one of the objectives of this study is 
to arrive at a values of n that will results to a plan with reduced 
sample size needed to be selected from the lot for inspection 
and result to reduced inspection cost and time, the approximate 
value of n can then be reduce by introducing parameter (shape 
parameter of the failure rate (F(t;μ)).When ρ<1.5, the sample 
size values become very large and when ρ<2.5, the sample size 
becomes approximately one irrespective of the combination 
of the parameters.

On replacing F(t,μ) in (10) with ρ F(t,μ), the resulting equation 
becomes
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Therefore, Equation (11) is the approximate of the improved 
sample size n.

Development of the Operating Characteristics of 
Isolated Truncated Chain Deferred Sampling Plan
Let A be the event of having “0” defectives in a sample of size 
“n.” Let B be the event of having “1” defectives in a sample 
of size “n.”

Let P(A) be the probability of having “0” defectives in a lot 
with sample size “n.”

Similarly, let P(B) be probability of having “1” defective in a 
lot with sample size “n” with the condition that there are zero 
defectives in the immediate preceding “i” lot and succeeding 
“j” lot.

That is, P(B)=P0,n+(P0) 
iP1,n (P0)

j� (12)

Since A and B are mutually exclusive events, using the addition 
theorem of probability,

P(P0∪P1)=P0,n+(P0,n)
iP1,n(P0,n)

j� (13)

We, therefore, have the probability of acceptance of lot as: 

Pa(P)=P0,n+(P0,n)
iP1,n (P0,n)

j� (14)

=P(d=0)+{P(d=1)/d=0 in the precedig i lot and succeeding 
j lot.}

Assuming Poisson distribution,
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On factorizing, we have:

	 = +( )-e npenp 1 2 � (18)

Now assuming a binomial distribution,
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Considering i = j = 1, we also have:
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Product Mean Life Ratio
The product life ratio is the ratio of the true unknown life of 
a product to the specified mean life by the producer when 
designing his product.[4] These values enable the producer 
to design his products so that it can be accepted at a high 
probability. To calculate the product life ratio values, the 
producer’s risk is been considered.

The value of m
m0

 is the smallest positive number for which 

the following inequality holds:

	
n
i
p pi n i

i c

n æ

è
ç
ö

ø
÷ - ³-

= +å ( ) .1 0 95
1

� (22)

For a given value of the producer’s risk, for example 0.05, one 
may be interested in knowing what value of that will ensure a 
producer’s risk ≤0.05 if a sampling plan is adopted. For a given 
sampling plan ( , , )n c t

m0
 and specified confidence level, the 

minimum values of are said to satisfy the equation below.
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Table 1: Failure rates of life distributions at specified
t
0

Lomax

0.628 0.2422
0.942 0.4570
1.571 0.9597
2.356 1.6543
3.141 2.3835
3.972 3.1704
4.713 3.8922

Table 2: Effect of on failure rate for the studied life 
distribution

t
0

Lomax

0.628 0.0571
0.942 0.0210
1.571 0.0099
2.356 0.0057
3.141 0.0037
3.972 0.0027
4.713 0.0571

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0.628 0.942 1.571 2.356 3.141 3.972 4.713

Fa
ilu

re
 R

at
e(

F(
tµ

0)

t/µ0

Figure 1: Failure rate plot for the underlined distribution for specified
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Figure 2: Effect of mean life on failure rate plot for studied 
distributions
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RESULTS AND DISCUSSION

Product Failure Rate Analysis
The failure rate function h(t) was used to obtain the rate of 
failure of products that assume these distribution. This function 
can be used to characterize the performance of an item with 
time. The result for this analysis is shown in Tables 1 and 2 
and Figures 1 and 2.

From Table 1 and Figure 1, Lomax distribution, the failure rate 
increases as the testing time increase.

Effect of Increasing Mean Ratio on Failure Rate of 
Life Distribution
Since the failure rate of the life distributions is known, the 
question is: How do we now reduce the failure rate of products 
that assume this distribution? Table 2 and Figure 2 show the 
effect of product’s mean life on failure rate of the distribution.

From Table 2 and Figure 2, as the products’ life ratio increases, 
the failure rate reduces. Weibull distribution had a sharp 
decrease in failure rate as the mean life increases.

Improved Minimum Sample Size
From existing literature, such as in Aslam and Shabaz,[4] 
Srinivasa,[2] and in Aslam et al.,[15] the acceptance number, 
acceptance maximum allowable percent defectives, and test 
ratio are conventionally set as follows: Acceptance number 
(c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10), (= 0.75, 0.90, 0.95, and 
0.990) and (t/μ0 = 0.68, 0.942, 1.257, 1.571, 2.358, 3.141, and 
3.972). A program written in R is used to generate the results.

Simulations for the Study
The minimum (optimal) sample size is obtained by first 
calculating the failure probability which is the probability 
that an item is classified as defective using the product life cdf 

(p) and there after substituting it into our modified minimum 
sample size formula with other parameters. A program was 
written in R to accomplish this task.

Table 3 displays the simulated values of the developed and 
modified sample sizes for the studied product life distribution 
under single truncated acceptance sampling plan.

From Table 3, the behavior of choice parameters from the sample 
size is as follows: The minimum sample sizes are smaller for lower 
acceptance number compared to a higher acceptance number for 
any combination of consumers’ risk and experiment time ratio.

Operating Characteristics for Isolated Truncated 
Chain Deferred Sampling Plan
The generated design parameters for the proposed sampling 
plan are presented in Table 4.

From Table 4, the operating characteristics increase as the mean 
life ratio increases, which indicate that items with increased 
mean life will be accepted with higher probability compared 
with items with lower mean life ratio.

Product Mean Life Ratio
The product mean ratio values guide the producer at improving 
on product quality for acceptability with high probability and 
minimized producer’s risk. For any given sampling plan and 
producer’s risk, say α=0.05, the minimum value of m

mO
 is 

obtained. This is done by combining values of the sample size, 
acceptance number, maximum allowable percent defective, 
and experimental ratio in the simulation using developed 
program in R software.

From Table  5, as the experimental time ratio increases, 
the minimum ratio of true mean life to specified mean life 
increases. It decreases as the acceptance number increases 
with decrease in consumers’ risk.

β c t
0

0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.713
0.25 0 2 2 2 2 2 2 1 1

1 3 3 3 2 2 2 2 2
2 4 4 3 3 3 3 3 2
3 5 5 4 4 3 3 3 3
4 6 6 4 4 4 4 4 4
5 7 7 5 5 4 4 4 4
6 8 8 5 5 5 5 5 5
7 8 8 6 6 5 5 5 5
8 9 9 7 7 6 6 6 6
9 10 10 7 7 6 6 6 6
10 11 11 8 8 7 7 7 7

Table 3: Minimum sample size for Lomax distribution

(Contd...)
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β c t
0

0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.713
0.10 0 2 2 2 2 2 2 2 1

1 3 3 3 3 2 2 3 3
2 4 4 3 3 3 3 3 3
3 5 5 5 4 4 4 4 4
4 6 6 5 4 4 4 4 4
5 7 7 5 5 4 4 4 4
6 8 8 5 5 5 5 5 5
7 8 8 6 6 5 5 5 5
8 9 9 8 7 6 6 6 6
9 11 10 9 7 6 6 6 6
10 11 11 9 8 7 6 6 6

0.05 0 3 3 3 3 3 3 2 2
1 5 5 5 5 4 4 4 3
2 5 5 5 5 5 5 4 4
3 7 7 6 6 6 6 6 4
4 7 7 7 6 6 6 6 4
5 7 7 7 7 6 6 6 5
6 7 7 7 7 6 6 6 6
7 8 8 8 7 6 6 6 6
8 8 8 8 7 7 7 7 7
9 9 8 8 7 7 7 7 7
10 9 8 8 8 8 7 7 8

0.01 0 4 4 4 3 3 3 3 2
1 4 4 4 4 4 3 3 3
2 5 5 5 5 4 4 3 3
3 5 5 4 4 4 4 4 4
4 6 6 4 4 4 4 4 4
5 7 7 5 5 5 5 5 5
6 8 8 5 5 5 5 5 5
7 8 8 6 6 5 5 5 5
8 9 9 7 7 6 6 6 6
9 10 10 7 7 6 6 6 6
10 11 11 8 8 6 6 7 7

Table 3: (Continued)

β t
0

n t
0

2 4 6 8 10 12
0.25 0.628 3 0.6343 0.650239 0.744285 0.798667 0.834031 0.858849

0.912 3 0.574673 0.68239 0.79462 0.783044 0.812654 0.835165
1.257 3 0.510403 0.634179 0.695012 0.737501 0.769485 0.794514
1.571 3 0.449673 0.599518 0.661688 0.704637 0.737524 0.763752
2.356 3 0.558911 0.623462 0.673669 0.712634 0.743497 0.768467
3.141 3 0.540933 0.593036 0.637283 0.673683 0.703772 0.728935
3.927 2 0.530185 0.572943 0.611738 0.64512 0.673658 0.698162
4.712 2 0.523228 0.558911 0.593026 0.623462 0.650202 0.673669

Table 4: Operating characteristics for ITDCSP for Lomax distribution

(Contd...)
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β t
0

n t
0

2 4 6 8 10 12
0.10 0.628 3 0.570349 0.569612 0.67807 0.743282 0.786649 0.817528

0.912 3 0.574673 0.68239 0.751879 0.783044 0.812654 0.835165
1.257 3 0.510403 0.634179 0.695012 0.737501 0.769485 0.794514
1.571 3 0.449673 0.599518 0.661688 0.704637 0.737524 0.763752
2.356 3 0.558911 0.623462 0.673669 0.712634 0.743497 0.768467
3.141 3 0.540933 0.593036 0.637283 0.673683 0.703772 0.728935
3.927 3 0.530185 0.572943 0.611738 0.64512 0.673658 0.698162
4.712 2 0.523228 0.558911 0.593026 0.623462 0.650202 0.673669

0.05 0.628 4 0.496587 0.501878 0.619519 0.69292 0.742799 0.778822
0.912 4 0.574673 0.68239 0.715912 0.783044 0.812654 0.835165
1.257 4 0.510403 0.634179 0.695012 0.737501 0.769485 0.794514
1.571 4 0.449673 0.599518 0.661688 0.704637 0.737524 0.763752
2.356 4 0.558911 0.623462 0.673669 0.712634 0.743497 0.768467
3.141 4 0.540933 0.593036 0.637283 0.673683 0.703772 0.728935
3.927 3 0.530185 0.572943 0.611738 0.64512 0.673658 0.698162
4.712 3 0.523228 0.558911 0.593026 0.623462 0.650202 0.673669

0.01 0.628 5 0.319894 0.395699 0.521256 0.605098 0.664429 0.708453
0.912 5 0.474837 0.629594 0.656078 0.739198 0.771843 0.797172
1.257 5 0.510403 0.634179 0.695012 0.737501 0.769485 0.794514
1.571 4 0.449673 0.599518 0.661688 0.704637 0.737524 0.763752
2.356 4 0.295886 0.525166 0.599552 0.644008 0.677491 0.704669
3.141 4 0.540933 0.593036 0.637283 0.673683 0.703772 0.728935
3.927 3 0.530185 0.572943 0.611738 0.64512 0.673658 0.698162
4.712 3 0.523228 0.558911 0.593026 0.623462 0.650202 0.673669

Table 4: (Continued)

Table 5: Minimum ratio of true mean life to specified mean life for Weibull distribution
β c t

0

0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.713
0.25 0 26.518 2.3034 3.4555 4.159 5.1983 6.2402 7.2796 8.3188

1 7.587 1.9268 2.5549 3.4072 3.6832 4.417 5.1706 5.9102
2 4.690 1.7224 2.3261 2.8425 3.5537 3.6101 4.2123 4.8146
3 3.654 1.6565 2.0623 2.4919 3.1153 3.7439 3.639 4.1736
4 3.115 1.5706 2.0076 2.2457 2.8074 3.3693 3.2605 3.7286
5 2.799 1.5106 1.8598 2.3026 2.5767 3.0941 3.6101 4.1356
6 2.548 1.4643 1.8484 2.1501 2.3998 2.8785 3.3568 3.8388
7 2.394 1.4276 1.7489 2.021 2.2512 2.6991 3.1586 3.6101
8 2.257 1.4253 1.6625 1.9146 2.3935 2.5549 2.9824 3.4072
9 2.150 1.399 1.6748 1.9857 2.2852 2.4319 2.8337 3.2373
10 2.081 1.3757 1.6067 1.9026 2.1863 2.3202 2.7071 3.0941

0.10 0 11.170 2.5093 3.4555 4.6081 5.758 6.2402 7.2796 8.3188
1 10.593 2.0576 2.7563 3.4072 4.2517 5.1125 5.9488 6.8446
2 6.365 1.8335 2.4716 3.1046 3.5537 4.2517 4.9727 5.6883
3 4.789 1.7422 2.2022 2.748 3.1153 3.7439 4.3535 4.9727

(Contd...)
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CONCLUSION

An isolated truncated chain deferred sampling plan for 
Lomax product life distribution is proposed when the testing 
is truncated at a specified time. The optimal sample sizes 
obtained under a given maximum allowable percent defective, 
test termination ratios, and acceptance numbers. The operating 
characteristics formula of the proposed plan was developed. 
The operating characteristics and mean ratio were used to 
assess the performance of the plan. The study revealed that 
Lomax distribution has an increasing failure rate; also, as 
mean life ratio increases, the failure rate reduces, and the 

minimum sample size increases as the acceptance number, 
maximum allowable percent defective, and experiment time 
ratio increase.

This work has given an insight about the failure rate pattern 
and effect of mean life on the product that assumes Lomax 
distribution, thereby enriching producers and users of this 
distribution on information that will enhance decision 
making when using these distributions. The developed plan is 
economically preferred when the test is destructive, thereby 
saving both cost and time of testing. The study concludes that 
the modified required minimum sample sizes were smaller 

β c t
0

0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.713
0.10 4 3.956 1.6474 2.12 2.4919 3.1153 3.3693 3.9386 4.5045

5 3.459 1.6095 1.9685 2.4851 2.8785 3.0941 3.6101 4.1356
6 3.126 1.5545 1.9391 2.3261 2.6831 3.2258 3.3568 3.8388
7 2.897 1.5106 1.9106 2.1915 2.5265 3.0321 3.1586 3.6101
8 2.699 1.4981 1.8225 2.2183 2.6062 2.8785 3.3568 3.8388
9 2.569 1.4667 1.8116 2.12 2.4851 2.7397 3.1918 3.6536
10 2.445 1.4388 1.7455 2.0346 2.381 2.6212 3.0628 3.499

0.05 0 16.529 2.5725 3.6381 4.6081 5.758 6.9089 8.0606 9.2123
1 13.021 2.1053 2.8969 3.6684 4.2517 5.1125 5.9488 6.8446
2 7.463 1.9146 2.4716 3.1046 3.888 4.2517 4.9727 5.6883
3 5.516 1.7762 2.3143 2.9343 3.4329 3.7439 4.3535 4.9727
4 9.518 1.7094 2.2129 2.6831 3.1153 3.7439 3.9386 4.5045
5 7.587 1.6385 2.0623 2.4851 2.8785 3.459 4.0258 4.6189
6 4.690 1.6038 2.0165 2.4649 2.9061 3.2258 3.7594 4.2918
7 3.654 1.5571 1.9771 2.3321 2.7397 3.0321 3.5398 4.0437
8 3.115 1.5387 1.8907 2.2183 2.6062 2.8785 3.3568 3.8388
9 2.799 1.5056 1.8713 2.2346 2.4851 2.9824 3.1918 3.6536
10 2.548 1.4762 1.8044 2.145 2.5407 2.8604 3.0628 3.499

0.01 0 2.394 2.6645 3.7646 4.8515 6.0654 6.9089 8.0606 9.2123
1 2.257 2.2183 3.0021 3.8551 4.5956 5.5157 5.9488 6.8446
2 2.150 2.0121 2.6752 3.296 3.888 4.6664 5.4496 6.2344
3 2.081 1.8907 2.4851 3.0836 3.6684 4.1169 4.8146 5.5157
4 4.170 1.7867 2.3563 2.8249 3.3445 4.0258 4.3745 5
5 10.593 1.7289 2.2075 2.748 3.1046 3.7286 4.0258 4.6189
6 6.365 1.6872 2.145 2.584 3.0836 3.4855 4.0617 4.6425
7 4.789 1.6356 2.0956 2.5478 2.9155 3.296 3.8388 4.3956
8 3.956 1.6095 2.0032 2.4319 2.7732 3.126 3.6536 4.1736
9 3.459 1.587 1.9728 2.3321 2.7902 3.1807 3.4855 3.973
10 3.126 1.5571 1.9474 2.3261 2.6831 3.0525 3.3322 3.8066

Table 5: (Continued)
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making it a more economical plan to be adopted when time and 
cost of production is expensive and the testing is destructive.
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